Skip to main content
Log in

QTL mapping and genomic selection for Fusarium ear rot resistance using two F2:3 populations in maize

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Fusarium ear rot (FER) is a common disease of maize that can seriously affect the yield and quality of maize. Resistance to FER is highly quantitative, largely under polygenic control with minor effects, and strongly influenced by environmental conditions. In this study, two F2:3 populations with 220 and 152 lines were developed from PHW43 × 8107 (PH81) and Zong31 × DTMA165 (ZODT) for QTL mapping and genomic selection (GS). Artificial inoculation was performed to evaluate FER resistance in four environments, Gongzhuling 2019, Shunyi 2019, Xinxiang 2019, and Xinxiang 2020. For both populations, we constructed a relatively high-density linkage map. Each F2:3 population showed a lower average FER severity than the natural population tested before. Significant genotypic variance, environment variance, and genotype × environment interaction variance were detected in both populations by combined ANOVA analysis. The combined broad-sense heritability of the FER severity was estimated as 0.60 and 0.67 in PH81 and ZODT, respectively. In PH81, seven QTL were identified on chromosomes 1, 4, 6, 7, and 10, four of which were detected in Xinxiang 2019 environment together explaining 24.15% of the total phenotypic variation. The QTL qPBLUE–7–1 on bin7.01 explaining the highest phenotypic variation (6.148.60%) was consistently identified across Xinxiang 2019 environment and the best linear unbiased estimators. Eight QTL were identified in ZOTD, explaining 7.11% (qZBLUE–6–1) to 13.29% (qZS19–10–1) of phenotypic variation. Two candidate genes were identified in bin 6.05, of which GRMZM2G066153 encodes an enzyme involving the defense of pathogens in many plants. Genomic best linear unbiased prediction (GBLUP) showed that 500 SNP markers were enough for F2:3 populations to achieve reasonably good prediction. The prediction accuracy in F2:3 populations could be improved by integrating QTL information into the GBLUP model and by using the extended GBLUP model with additive and dominance effects included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albrecht T, Wimmer V, Auinger H, Erbe M, Knaak C, Ouzunova M, Simianer H, Schön CC (2011) Genome-based prediction of testcross values in maize. Theor Appl Genet 123:339–350

    Article  PubMed  Google Scholar 

  • Bernardo R (2014) Genomewide selection when major genes are known. Crop Sci 54:68–75

    Article  Google Scholar 

  • Boddu J, Cho S, Kruger WM, Muehlbauer GJ (2006) Transcriptome analysis of the barley Fusarium graminearum interaction. Mol Plant Microbe Interact 19:407–417

    Article  CAS  PubMed  Google Scholar 

  • Bolduan C, Montes J, Dhillon B, Mirdita V, Melchinger A (2009) Determination of mycotoxin concentration by ELISA and near-infrared spectroscopy in Fusarium-inoculated maize. Cereal Res Commun 37:521–529

    Article  CAS  Google Scholar 

  • Bush BJ, Carson ML, Cubeta MA, Hagler WM, Payne GA (2004) Infection and Fumonisin production by Fusarium verticillioides in developing maize kernels. Phytopathology 94:88–93

    Article  CAS  PubMed  Google Scholar 

  • Butoto EN, Marino TP, Holland JB (2021) Effects of artificial inoculation on trait correlations with resistance to Fusarium ear rot and fumonisin contamination in maize. Crop Sci 61:2522–2533

    Article  CAS  Google Scholar 

  • Butrón A, Santiago R, Cao A, Samayoa LF, Malvar RA (2019) QTLs for resistance to Fusarium ear rot in a multiparent advanced generation intercross (MAGIC) maize population. Plant Dis 103:897–904

    Article  PubMed  Google Scholar 

  • Cao S, Loladze A, Yuan Y, Wu Y, Zhang A, Chen J, Huestis G, Cao J, Chaikam V, Olsen M, Prasanna BM, Vicente FS, Zhang X (2017) Genome-wide analysis of tar spot complex resistance in maize using genotyping-by-sequencing SNPs and whole-genome prediction. Plant Genome-US 10:1–14

    Google Scholar 

  • Chen J, Ding J, Li H, Li Z, Sun X, Li J, Sun X, Li J, Wang R, Dai X, Dong H, Song W, Wu J (2012) Detection and verification of quantitative trait loci for resistance to Fusarium ear rot in maize. Mol Breed 30:1649–1656

    Article  CAS  Google Scholar 

  • Chen Z, Wang B, Dong X, Liu H, Ren L, Chen J, Hauck A, Song W, Lai J (2014) An ultra-high density bin-map for rapid QTL mapping for tassel and ear architecture in a large F2 maize population. BMC Genomics 15:433

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen J, Shrestha R, Ding J, Zheng H, Mu C, Wu J, Mahuku G (2016) Genome-wide association study and QTL mapping reveal genomic loci associated with Fusarium ear rot resistance in tropical maize germplasm. Genes Genom Genet 6:3803–3815

    CAS  Google Scholar 

  • Clements MJ, Maragos CM, Pataky JK, White DG (2004) Sources of resistance to fumonisin accumulation in grain and fusarium ear and kernel rot of corn. Phytopatholog 94:251–260

    Article  CAS  Google Scholar 

  • Coan MMD, Senhorinho HJC, Pinto RB, Scapim CA, Tessmann DJ, Williams WP, Warburton ML (2018) Genome-wide association study of resistance to ear rot by Fusarium verticillioides in a tropical field maize and popcorn core collection. Crop Sci 58:564–578

    Article  CAS  Google Scholar 

  • Combs E, Bernardo R (2013) Accuracy of genomewide selection for different traits with constant population size, heritability, and number of markers. Plant Genome-US 6:1–7

    Google Scholar 

  • Cooper B (2001) Collateral gene expression changes induced by distinct plant viruses during the hypersensitive resistance reaction in Chenopodium amaranticolor. Plant J 26:339–349

    Article  CAS  PubMed  Google Scholar 

  • Ding JQ, Wang XM, Chander S, Yan JB, Li JS (2008) QTL mapping of resistance of resistance to Fusarium ear rot using a RIL population in maize. Mol Breed 22:395–403

    Article  Google Scholar 

  • Dos Santos JPR, Pires LPM, de Castro Vasconcellos RC, Pereira GS, Pinho RGV, Balestre M (2016) Genomic selection to resistance to Stenocarpella maydis in maize lines using DarTseq markers. BMC Genet 17:1–10

    CAS  Google Scholar 

  • Drepper WJ, Renfro BL (1990) Comparison of methods for inoculation of ears and stalks of maize with Fusarium moniliforme. Plant Dis 74:952–956

    Article  Google Scholar 

  • Eller MS, Payne GA, Holland JB (2010) Selection for reduced Fusarium ear rot and fumonisin content in advanced backcross maize lines and their topcross hybrids. Crop Sci 50:2249–2260

    Article  Google Scholar 

  • Gaikpa DS, Miedaner T (2019) Genomics-assisted breeding for ear rot resistances and reduced mycotoxin contamination in maize: methods, advances and prospects. Theor Appl Genet 132:2721–2739

    Article  CAS  PubMed  Google Scholar 

  • Gowda M, Das B, Makumbi D, Babu R, Semagn K, Mahuku G, Olsen MS, Bright JM, Beyene Y, Prasanna BM (2015) Genome-wide association and genomic prediction of resistance to maize lethal necrosis disease in tropical maize germplasm. Theor Appl Genet 128:1957–1968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Z, Wang H, Tao J, Ren Y, Xu C, Wu K, Zou C, Zhang J, Xu Y (2019) Development of multiple SNP marker panels affordable to breeders through genotyping by target sequencing (GBTS) in maize. Mol Breed 39(3):1–2F

  • Guo Z, Zou C, Liu X, Wang S, Li WX, Deffers D, Fan X, Xu M, Xu Y (2020) Complex genetic system involved in Fusarium ear rot resistance in maize as revealed by GWAS, bulked sample analysis, and genomic prediction. Plant Dis 204:1725–1735

    Article  Google Scholar 

  • Han S, Utz HF, Liu W, Schrag TA, Stange M, Würschum T, Miedaner T, Bauer E, Schön CC, Melchinger AE (2016) Choice of models for QTL mapping with multiple families and design of the training set for prediction of Fusarium resistance traits in maize. Theor Appl Genet 129:431–444

    Article  CAS  PubMed  Google Scholar 

  • Han S, Miedaner T, Utz HF, Schipprack W, Schrag TA, Melchinger AE (2018) Genomic prediction and GWAS of Gibeberlla ear rot resistance traits in dent and flint lines of a public maize breeding program. Euphytica 214:6

    Article  CAS  Google Scholar 

  • Hayes BJ, Goddard ME (2007) Genomic selection. J Anim Breed Genet 124:323–330

    Article  PubMed  Google Scholar 

  • Heffner EL, Jannink JL, Iwata H, Souza E, Sorrells ME (2011) Genome selection accuracy for grain quality traits in biparental wheat populations. Crop Sci 51:2597–2606

    Article  Google Scholar 

  • Holland JB, Marino TP, Manching HC, Wisser RJ (2020) Genomic prediction for resistance to Fusarium ear rot and fumonisin contamination in maize. Crop Sci 60:1863–1875

    Article  CAS  Google Scholar 

  • Hung HY, Holland JB (2012) Diallel analysis of resistance to Fusarium ear rot and fumonisin contamination in maize. Crop Sci 52:2173–2181

    Article  Google Scholar 

  • Lanubile A, Maschietto V, Borrelli VM, Stagnati L, Logrieco AF, Marocco A (2017) Molecular basis of resistance to Fusarium ear rot in maize. Front Plant Sci 8:1774

    Article  PubMed  PubMed Central  Google Scholar 

  • Li HH, Hearne S, Bänziger M, Li Z, Wang JK (2010) Statistical properties of QTL linkage mapping in biparental genetic populations. Heredity 1505(3):257–267

    Article  CAS  Google Scholar 

  • Li ZM, Ding JQ, Wang RX, Chen JF, Sun XD, Chen W, Song WB, Dong HF, Dai XD, Xia ZL, Wu JY (2011) A new QTL for resistance to Fusarium ear rot in maize. J Appl Genet 52:403–406

    Article  PubMed  Google Scholar 

  • Lian L, Jacobson A, Zhong S, Bernardo R (2014) Genomewide prediction accuracy within 969 maize biparental populations. Crop Sci 54:1514–1522

    Article  Google Scholar 

  • Liu X, Wang H, Wang H, Guo Z, Xu X, Liu J, Wang S, Li WX, Zou C, Prasanna BM, Olsen MS, Huang C, Xu Y (2018) Factors affecting genomic selection revealed by empirical evidence in maize. Crop J 6:341–352

    Article  Google Scholar 

  • Liu X, Hu X, Li K, Liu Z, Wu Y, Wang W, Huang C (2020) Genetic mapping and genomic selection for maize stalk strength. BMC Plant Biol 20:196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Hu G, Zhang A, Loladze A, Hu Y, Wang H, Qu J, Zhang X, Olsen M, Vicente FS, Crossa J, Lin F, Prasanna BM (2021) Genome-wide association study and genomic prediction of Fusarium ear rot resistance in tropical maize germplasm. Crop J 9:325–341

    Article  Google Scholar 

  • Löffler M, Kesssel B, Ouzunova M, Miedaner T (2011) Covariation between line and testcross performance for reduced mycotoxin concentrations in European maize after silk channel inoculation of two Fusarium species. Theor Appl Genet 122:925–934

    Article  PubMed  CAS  Google Scholar 

  • Logrieco A, Battilani P, Leggieri MC, Jiang Y, Haesaert G, Lanubile A, Mahuku G, Mesterházy A, Ortega-Beltran A, Pasti M, Smeu I, Torres A, Xu J, Munkvold G (2021) Perspectives on global mycotoxin issues and management from the mycokey maize working group. Plant Dis 105:525–537

    Article  PubMed  Google Scholar 

  • Lu Y, Zhang S, Shah T, Xie C, Hao Z, Li X, Farkhari M, Ribaut JM, Cao M, Rong T, Xu Y (2010) Joint linkage-linkage disequilibrium mapping is a powerful approach to detecting quantitative trait loci underlying drought tolerance in maize. Proc Natl Acad Sci USA 107:19585–19590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maschietto V, Colombi C, Pirona R, Pea G, Strozzi F, Marocco A, Rossini L, Lanubile A (2017) QTL mapping and candidate genes for resistance to Fusarium ear rot and fumonisin contamination in maize. BMC Plant Biol 17:20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meng L, Li H, Zhang L, Wang J (2015) QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J 3:269–283

    Article  Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munkvold GP (2003) Cultural and genetic approaches to managing mycotoxins in maize. Annu Rev Phytopathol 41:99–116

    Article  CAS  PubMed  Google Scholar 

  • Netshifhefhe NEI, Flett BC, Viljoen A, Rose LJ (2018) Inheritance and genotype by environment analyses of resistance to Fusarium verticillioides and fumonisin contamination in maize F1 hybrids. Euphytica 214:235

    Article  CAS  Google Scholar 

  • Pérez-Brito D, Jeffers D, González-de-León D, Khairallah M, Cortés-Cruz M, Velázquez-Cardelas G, AzpÍroz-Rivero S, Srinivasan G (2001) QTL mapping of Fusarium moniliforme ear rot resistance in highland maize, Mexico. Agrociencia 35:181–196

    Google Scholar 

  • Presello DA, Botta G, Iglesias J, Eyhérabide GH (2008) Effect of disease severity on yield and grain fumonisin concentration of maize hybrids inoculated with Fusarium verticillioides. Crop Prot 27:572–576

    Article  CAS  Google Scholar 

  • Riedelsheimer C, Enddlman JB, Stange M, Sorrells ME, Jannink JL, Melchinger AE (2013) Genomic predictability of interconnected biparental maize populations. Genetics 194:493–503

    Article  PubMed  PubMed Central  Google Scholar 

  • Robertson-Hoyt LA, Jines MP, Balint-Kurti PJ, Kleinschmidt CE, White DG, Payne GA, Maragos CM, Holland JB (2006) QTL mapping for Fusarium ear rot and fumonisin contamination resistance in two maize populations. Crop Sci 16:1734–1744

    Article  CAS  Google Scholar 

  • Rutkoski JE, Poland JA, Singh RP, Huerta-Espino J, Bhavani S, Barbier H, Rouse MN, Jannink JL, Sorrells ME (2014) Genomic selection for quantitative adult plant stem rust resistance in wheat. Plant Genome. https://doi.org/10.3835/plantgenome2014.02.0006

    Article  Google Scholar 

  • Sekhon RS, Lin H, Childs KL, Hansey CN, Buell CR, de Leon N, Kaeppler SM (2011) Genome-wide atlas of transcription during maize development. Plant J 66:553–563

    Article  CAS  PubMed  Google Scholar 

  • Septiani P, Lanubile A, Stagnati L, Busconi M, Nelissen H, Pè ME, Dell′Acqua M, Marocco A (2019) Unravelling the genetic basis of Fusarium seedling rot resistance in the MAGIC maize population: novel targets for breeding. Sci Rep 9:5665

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shikha M, Kanika A, Rao AR, Mallikarjuna MG, Gupta HS, Nepolean T (2017) Genomic selection for drought tolerance using genome-wide SNPs in maize. Front Plant Sci 8:550

    Article  PubMed  PubMed Central  Google Scholar 

  • Spindel JE, Begum H, Akdemir D, Collard B, Redoña E, Jannink JL, McCouch S (2016) Genome-wide prediction models that incorporate de novo GWAS are a powerful new tool for tropical rice improvement. Heredity 116:395–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stagnati L, Rahjoo V, Samayoa LF, Holland JB, Borrelli VMG, Busconi M, Lanubile A, Marocco A (2020) A genome-wide association study to understand the effect of Fusarium verticillioides infection on seedlings of a maize diversity panel. Genes Genom Genet 10:1685–1696

    CAS  Google Scholar 

  • Su G, Christensen OF, Ostersen T, Henryon M, Lund MS (2012) Estimating additive and non-additive genetic variances and predicting genetic merits using genome-wide dense single nucleotide polymorphism markers. e45293

  • Tam V, Patel N, Turcotte M, Bossé Y, Paré G, Meyre D (2019) Benefits and limitations of genome-wide association studies. Nat Rev Genet 20:467–484

    Article  CAS  PubMed  Google Scholar 

  • Technow F, Bürger A, Melchinger AE (2013) Genomic prediction of Northern corn leaf blight resistance in maize with combined or separated training sets for heterotic groups. Genes Genom Genet 3:197–203

    Google Scholar 

  • Technow F, Schrag TA, Schipprack W, Bauer E, Simianer H, Melchinger AE (2014) Genome properties and prospects of genomic prediction of hybrid performance in a breeding program of maize. Genetics 197:1343–1355

    Article  PubMed  PubMed Central  Google Scholar 

  • Vanraden PM (2008) Efficient methods to compute genomic predictions. J Dairy Sci 91:4414–4423

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Li L, Yang Z, Zheng X, Yu S, Xu C, Hu Z (2017) Predicting rice hybrid performance using univariate and multivariate GBLUP models based on North Carolina mating design II. Heredity 118:302–310

    Article  CAS  PubMed  Google Scholar 

  • Xiang K, Zhang ZM, Reid LM, Zhu XY, Yuan GS, Pan GT (2010) A meta-analysis of QTL associated with ear rot resistance in maize. Maydica 55:281–290

    Google Scholar 

  • Xu S (2002) Theoretical basis of the Beavis effect. Genetics 165:2259–2268

    Article  Google Scholar 

  • Xu S, Zhu D, Zhang Q (2014) Predicting hybrid performance in rice using genomic best linear unbiased prediction. Proc Natl Acad Sci USA 111:12456–12461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao L, Li Y, Ma C, Tong L, Du F, Xu M (2020) Combined genome-wide association study and transcriptome analysis reveal candidate genes for resistances to Fusarium ear rot in maize. J Integr Plant Biol 62:1535–1551

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Wan XQ, Pan GT (2006) QTL mapping of Fusarium moniliforme ear rot resistance in maize. 1. Map construction with microsatellite and AFLP markers. J Appl Genet 47:9–15

    Article  PubMed  Google Scholar 

  • Zhang X, Perez-Rodriguez P, Burgueno J, Olsen M, Buckler E, Atlin G, Prasanna BM, Vargas M, San Vicente F, Crossa J (2017) Rapid cycling genomic selection in a multiparental tropical maize population. Genes Genom Genet 7:2315–2326

    Google Scholar 

  • Zhao Y, Gowda M, Liu W, WürschumT MHP, Longin FH, Ranc N, Reif JC (2012) Accuracy of genomic selection in European maize elite breeding populations. Theor Appl Genet 124:769–776

    Article  PubMed  Google Scholar 

  • Zila CT, Samayoa LF, Santiago R, Butrón A, Holland JB (2013) A genome-wide association study reveals genes associated with Fusarium ear rot resistance in a maize core diversity panel. Genes Genom Genet 3:2095–2104

    Google Scholar 

  • Zila CT, Ogut F, Romay MC, Gardner CA, Buckler ES, Holland JB (2014) Genome-wide association study of Fusarium ear rot disease in the U.S.A maize inbred line collection. BMC Plant Biol 14:372

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

The authors would like to thank two anonymous reviewers for their comments and suggestions that significantly improved the manuscript. The authors acknowledge the support by the National Key Research and Development Program of China (2017YFD0101201), Central Public-interest Scientific Institution Basal Research Fund (Y2020PT20), Agricultural Science, and Technology Innovation Program (ASTIP) of the Chinese Academy of Agricultural Sciences (CAAS) (CAAS-XTCX2016009). Research activities at CIMMYT-China were supported by the Bill and Melinda Gates Foundation and the CGIAR Research Program MAIZE.

Author information

Authors and Affiliations

Authors

Contributions

Y.X., M.X. and Z.G. conceived the project and designed the experiments. Y.X., X.W.L. and Z.G. raised funding. Z.G., J.L., W.G. and S.W. performed the experiments. Z.G., Y.X. and M.X. analyzed and interpreted the data. Z.G., Y.X., M.X. and X.W.L. wrote the manuscript. All authors contributed to discussion of the manuscript.

Corresponding author

Correspondence to Yunbi Xu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Z., Wang, S., Li, WX. et al. QTL mapping and genomic selection for Fusarium ear rot resistance using two F2:3 populations in maize. Euphytica 218, 131 (2022). https://doi.org/10.1007/s10681-022-03083-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-022-03083-z

Keywords

Navigation