Skip to main content
Log in

Development of a new codominant CAPS marker for sex genotype identification in asparagus

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Garden asparagus (Asparagus officinalis L.) is a dioecious species, with male [XY] and female [XX] individuals. Since male individuals are preferred over females for agricultural production, all-male cultivars have agronomic advantages over mixed-sex cultivars. To produce an all-male cultivar, it is important to obtain a supermale [YY]. Given their morphological similarities, males and supermales are usually distinguished by genetic analysis. To reduce the time required for asparagus breeding, various dominant and codominant male-specific DNA markers have been developed to date. Although two sex-linked codominant markers (Asp2-SP6 and RM17) have been reported previously, their ability to distinguish the sex in A. officinalis and other dioecious Asparagus species has not been evaluated extensively. Therefore, we analyzed the application of these markers to A. officinalis, purple asparagus cultivars and other dioecious Asparagus species in this study. Our results showed that the capacity of these markers to distinguish the sex in A. officinalis and purple asparagus cultivars was limited, thus we developed a new CAPS marker (SSM01), based on the sequence around the RM17 marker. Since SSM01 amplify ca. 470 bp fragment and only Y-specific fragment was digested into ca. 270/200 bp by XspI, this marker can discriminate between females, males and supermales. SSM01 is applicable for discrimination between X- and Y-specific sequences in various A. officinalis and purple asparagus cultivars, also in three dioecious Asparagus species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article and its supplementary information files.

References

  • Benson BL, Mullen RJ, Dean BB (1996) Three new green asparagus cultivars; Apollo, Atlas and Grande and one purple cultivar, purple passion. Acta Hort 415:59–65

    Article  Google Scholar 

  • Biffi R, Restivo FM, Caporali A, Marziani GP, Spada A, Falavigna A (1995) A restriction fragment length polymorphism probe for early diagnosis of gender in Asparagus officinalis L. Hort Sci 30:1463–1464

    CAS  Google Scholar 

  • Falavigna A, Casali PE, Taccomi MG (1990) Potential of in vitro anther culture technique for asparagus. Acta Hort 271:39–46

    Article  Google Scholar 

  • Falavigna A, Casali PE, Taccomi MG (1996) Advances in asparagus breeding following in vitro anther culture. Acta Hort 415:137–142

    Article  Google Scholar 

  • Falloon PG, Andersen AM (1999) Breeding purple asparagus from tetraploid “Violetto d’Albenga.” Acta Hort 479:109–113

    Article  Google Scholar 

  • Gao WJ, Li RL, Li FS, Deng CL, Li SP (2007) Identification of two markers linked to the sex locus in dioecious Asparagus officinalis plants. Russ J Plant Physiol 54:816–821

    Article  CAS  Google Scholar 

  • Harkess A, Zhou J, Xu C, Bowers JE, Van der Hulst R, Ayyampalayam S, Mercati F, Riccardi P, McKain MR, Kakrana A, Tang H, Ray J, Groenendijk J, Arikit S, Mathioni SM, Nakano M, Shan H, Telgmann-Rauber A, Kanno A, Yue Z, Chen H, Li W, Chen Y, Xu X, Zhang Y, Luo S, Chen H, Gao J, Mao Z, Pires JC, Luo M, Kudrna D, Wing RA, Meyers BC, Yi K, Kong H, Lavrijsen P, Sunseri F, Falavigna A, Ye Y, Leebens-Mack JH, Chen G (2017) The asparagus genome sheds light on the origin and evolution of a young Y chromosome. Nat Commun 8:1279

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Honda H, Hirai A (1990) A simple and efficient method for identification of hybrids using nonradioactive rDNA as probe. Jpn J Breed 40:339–348

    Article  CAS  Google Scholar 

  • Horiuchi K, Adachi Y, Kasai N, Yamagishi M, Masuda K (2011) Identification of homozygous male plants by quantitative analysis of a nucleotide sequence linked to the sex-determination locus in Asparagus officinalis L. J Jpn Soc Hort Sci 80:308–313

    Article  CAS  Google Scholar 

  • Ii Y, Uragami A, Uno Y, Kanechi M, Inagaki N (2012) RAPD-based analysis of differences between male and female genotypes of Asparagus officinalis. Hort Sci (prague) 39:33–37

    Article  CAS  Google Scholar 

  • Ito T, Konno I, Kubota S, Ochiai T, Sonoda T, Hayashi Y, Fukuda T, Yokoyama J, Nakayama H, Kameya T, Kanno A (2011) Production and characterization of interspecific hybrids between Asparagus kiusianus Makino and A. officinalis L. Euphytica 182:285–294

    Article  Google Scholar 

  • Jamsari A, Nits I, Reamon-Büttner SM, Jung C (2004) BAC-derived diagnostic markers for sex determination in asparagus. Theor Appl Genet 108:1140–1146

    Article  CAS  PubMed  Google Scholar 

  • Jiang C, Sink KC (1997) RAPD and SCAR markers linked to the sex expression locus M in asparagus. Euphytica 94:329–333

    Article  CAS  Google Scholar 

  • Kanno A, Kubota S, Ishino K (2014) Conversion of a malespecific RAPD marker into an STS marker in Asparagus officinalis L. Euphytica 197:39–46

    Article  CAS  Google Scholar 

  • Kanno A, Yokoyama J (2011) Asparagus. In: Kole C (ed) Wild crop relatives: genomic and breeding resources, vegetables. Springer-Verlag, Berlin, pp 23–42

    Chapter  Google Scholar 

  • Kim SC, Jung YH, Kim S, Jang KC, Song EY, Seong KC, Um YC (2008) Development of SCAR marker for sex identification in Asparagus. Acta Hort 776:327–331

    Article  CAS  Google Scholar 

  • Knaflewski M (1996) Genealogy of asparagus cultivars. Acta Hort 415:87–91

    Article  Google Scholar 

  • Kubota S, Konno I, Kanno A (2012) Molecular phylogeny of the genus Asparagus (Asparagaceae) explains interspecific crossability between the garden asparagus (A. officinalis) and other Asparagus species. Theor Appl Genet 124:345–354

    Article  PubMed  Google Scholar 

  • Löptien H (1979) Identification of the sex chromosome pair in asparagus (Asparagus officinalis L.). Z Pflanzenzüchtg 82:162–173

    Google Scholar 

  • Maestri E, Restivo FM, Marziani-Longo GP, Falavigna A, Tassi F (1991) Isozyme gene markers in the dioecious species Asparagus officinalis L. Theor Appl Genet 81:613–618

    Article  CAS  PubMed  Google Scholar 

  • Mercati F, Riccardi P, Harkess A, Sala T, Abenavoli MR, Leebens-Mack J, Falavigna A, Sunseri F (2015) Single nucleotide polymorphism-based parentage analysis and population structure in garden asparagus, a worldwide genetic stock classification. Mol Breed 35:59

    Article  Google Scholar 

  • Mitoma M, Zhang L, Konno I, Imai S, Motoki S, Kanno A (2018) A new DNA marker for sex identification in purple asparagus. Euphytica 214:154

    Article  CAS  Google Scholar 

  • Moreno R, Espejo JA, Cabrera A, Millán T, Gil J (2006) Ploidic and molecular analysis of ‘Morado de Huetor’ asparagus (Asparagus officinalis L.) population; a Spanish tetraploid landrace. Genet Resour Crop Evol 53:729–736

    Article  CAS  Google Scholar 

  • Moreno R, Espejo JA, Cabrera A, Gil J (2008) Origin of tetraploid cultivated asparagus landraces inferred from nuclear ribosomal DNA internal transcribed spacers’ polymorphism. Ann Appl Biol 153:233–241

    CAS  Google Scholar 

  • Moreno-Pinel R, Castro-López P, Die-Ramón JV, Gil-Ligero J (2021) Fruit and young shoots. Adv Plant Breed Strateg Veg Crops 9:425–469

    Article  Google Scholar 

  • Murase K, Shigenobu S, Fujii S, Ueda K, Murata T, Sakamoto A, Wada Y, Yamaguchi K, Osakabe Y, Osakabe K, Kanno A, Ozaki Y, Takayama S (2017) A MYB transcription factor gene involved in sex determination in Asparagus officinalis. Genes Cells 22:115–123

    Article  CAS  PubMed  Google Scholar 

  • Nakayama H, Ito T, Hayashi Y, Sonoda T, Fukuda T, Ochiai T, Kameya T, Kanno A (2006) Development of sex-linked primers in garden asparagus (Asparagus officinalis L.). Breed Sci 56:327–330

    Article  Google Scholar 

  • Ochiai T, Sonoda T, Kanno A, Kameya T (2002) Interspecific hybrids between Asparagus schoberioides Kunth and A. officinalis L. Acta Hort 589:225–229

    Article  Google Scholar 

  • Reamon-Büttner SM, Jung C (2000) AFLP-derived STS markers for the identification of sex in Asparagus officinalis L. Theor Appl Genet 100:432–438

    Article  Google Scholar 

  • Reamon-Büttner SM, Schondelmaier J, Jung C (1998) AFLP markers tightly linked to the sex locus in Asparagus officinalis L. Mol Breed 4:91–98

    Article  Google Scholar 

  • Regalado JJ, Gil J, Castro P, Moreno R, Lopez-Encina C (2014) Employment of molecular markers to develop tetraploid ‘“supermale”’ asparagus from andromonoecious plants of the landrace ‘Morado de Huétor.’ Span J Agric Res 12:1131–1136

    Article  Google Scholar 

  • Restivo FM, Tassi F, Biffi R, Falavigna A, Caporali E, Carboni A, Doldi ML, Spada A, Marziani GP (1995) Linkage arrangement of RFLP loci in progenies from crosses between doubled haploid Asparagus officinalis L. clones. Theor Appl Genet 90:124–128

    Article  CAS  PubMed  Google Scholar 

  • Rick LM, Hanna GL (1943) Determination of sex in Asparagus officinalis. Am J Bot 30:711–714

    Article  Google Scholar 

  • Shiga I, Uno Y, Kanechi M, Inagaki N (2009) Identification of polyploidy of in vitro anther-derived shoots of Asparagus officinalis L. by flow cytometric analysis and measurement of stomatal length. J Jpn Soc Hort Sci 78:103–108

    Article  Google Scholar 

  • Sinton SM, Wilson DR (1999) Comparative performance of male and female plants during the annual growth cycle of a dioecious Asparagus cultivar. Acta Hort 479:347–353

    Article  Google Scholar 

  • Sneep J (1953) The significance of andromonoecy for the breeding of Asparagus officinalis L. Euphytica 2:89–172

    Article  Google Scholar 

  • Stone NK, Roose ML (2020) Andromonoecious outcrossing: a novel method of generating males suitable as parents of male asparagus cultivars. Acta Hort 1301:75–82

    Article  Google Scholar 

  • Stone NK, Thomas ZM, Roose ML (2018) A new robust codominant sex-linked STS marker for asparagus. Acta Hort 1223:51–58

    Article  Google Scholar 

  • Torrey D, Peirce L (1983) Production of haploid plantlets from anthers of asparagus. Hort Sci 18:569

    Google Scholar 

  • Tsugama D, Matsuyama K, Ide M, Hayashi M, Fujino K, Masuda K (2017) A putative MYB35 ortholog is a candidate for the sex-determining genes in Asparagus officinalis. Sci Rep 7:41497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valente MT, Sabatini E, Casali PE, Ferrari L, Falavigna A (2012) Molecular marker-assisted introgression of wild Asparagus species genome into the cultivated Asparagus officinalis L. Acta Hort 950:181–186

    Article  Google Scholar 

Download references

Acknowledgements

We thank Prof. Takahiro Sonoda (Rakuno Gakuen University, Japan) for providing plant materials of ‘RG murasakishikibu Luce’ and ‘RG murasakishikibu First’. This work was supported by JSPS KAKENHI (Grant Numbers: 18H02192 and 18K19197) and by the research program on development of innovative technology Grants (JPJ007097) from the Project of the Bio-oriented Technology Research Advancement Institution (BRAIN).

Funding

This work was supported by JSPS KAKENHI (Grant Numbers: 18H02192 and 18K19197) and by the research program on development of innovative technology Grants (JPJ007097) from the Project of the Bio-oriented Technology Research Advancement Institution (BRAIN).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by MA. The manuscript was written by both authors.

Corresponding author

Correspondence to Akira Kanno.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10681_2022_3029_MOESM1_ESM.pdf

Supplementary file1 (PDF 348 kb)—PCR analysis of A. officinalis and purple asparagus cultivars using the Asp2-SP6 marker. a Six F1 individuals generated by self-fertilizing the andromonoecious line ‘Gijnlim’ [XY]. Lanes 1, 2: females [XX]; 3, 4: males [XY]; 5, 6: supermales [YY]. b Four A. officinalis cultivars. Lanes 1–3, 7–9, 16–18: females [XX]; 4–6, 10–15, 19-21: males [XY]. c Two purple asparagus cultivars. Lanes 1–3, 7–9: females; 4–6, 10–12: males. In ac, the top image shows fragments amplified by Asp2-SP6 primers, and the bottom image shows Asp2-SP6 amplicons digested by MseI. Lane M: 100 bp ladder. Arrows indicate 500 bp

10681_2022_3029_MOESM2_ESM.pdf

Supplementary file2 (PDF 306 kb)—PCR analysis of asparagus cultivars using the RM17 marker. Black triangles indicate X- and Y-specific fragments (189 and 215 bp, respectively). a Six F1 individuals derived by self-fertilizing the andromonoecious line ‘Gijnlim’ [XY]. Lanes 1, 2: females [XX]; 3, 4: males [XY]; 5, 6: supermales [YY]. b Four A. officinalis cultivars. Lanes 1–3, 7–9, 13–15, females [XX]; 4–6, 10–12, 16–21, males [XY]. c Two purple asparagus cultivars. Lanes 1–3, 7–9: females; 4–6, 10–12: males

10681_2022_3029_MOESM3_ESM.pdf

Supplementary file3 (PDF 593 kb)—Alignment of X- and Y-specific sequences around the SSM01 marker in A. officinalis ‘Mary Washington 500 W’ (MW), ‘Gijnlim’ (GM) and purple asparagus cultivars ‘Purple Passion’ (Pas) and ‘Pacific Purple’ (Pfc). Dotted arrows indicate the annealing sites of RM17su-fw and RM17su-rv primers, and solid arrows indicate the annealing sites of SSM01-fw and SSM01-rv primers. Black box indicates the Y-specific XspI site. Red squares indicate Y-specific polymorphisms

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akahori, M., Kanno, A. Development of a new codominant CAPS marker for sex genotype identification in asparagus. Euphytica 218, 75 (2022). https://doi.org/10.1007/s10681-022-03029-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-022-03029-5

Keywords

Navigation