Alonso M, Abbate P, Mirabella N, Merlos F, Panelo J, Pontaroli A (2018) Analysis of sink/source relations in bread wheat recombinant inbred lines and commercial cultivars under a high yield potential environment. Eur J Agron 93:82–87. https://doi.org/10.1016/j.eja.2017.11.007
Article
Google Scholar
Arthur JC (1891) Wheat scab. Purdue University, Indiana Agricultural Experiment Station
Google Scholar
Bai G, Shaner G (1994) Scab of wheat: prospects for control. Plant Dis 78(8):760–766. https://doi.org/10.1094/PD-78-0760
Article
Google Scholar
Buerstmayr M, Buerstmayr H (2015) Comparative mapping of quantitative trait loci for Fusarium head blight resistance and anther retention in the winter wheat population Capo × Arina. Theor Appl Genet 128:1519–1530. https://doi.org/10.1007/s00122-015-2527-8
CAS
Article
PubMed
PubMed Central
Google Scholar
Buerstmayr M, Lemmens M, Steiner B, Buerstmayr H (2011) Advanced backcross QTL mapping of resistance to Fusarium head blight and plant morphological traits in a Triticum macha × T. aestivum population. Theor Appl Genet 123(2):293. https://doi.org/10.1007/s00122-011-1584-x
Article
PubMed
PubMed Central
Google Scholar
Buerstmayr M, Huber K, Heckmann J, Steiner B, Nelson JC, Buerstmayr H (2012) Mapping of QTL for Fusarium head blight resistance and morphological and developmental traits in three backcross populations derived from Triticum dicoccum x Triticum durum. Theor Appl Genet 125:1751–1765. https://doi.org/10.1007/s00122-012-1951-2
Article
PubMed
PubMed Central
Google Scholar
Buerstmayr M, Steiner B, Buerstmayr H (2020) Breeding for Fusarium head blight resistance in wheat—progress and challenges. Plant Breed 139(3):429–454. https://doi.org/10.1111/pbr.12797
CAS
Article
Google Scholar
CIMMYT (2019). https://www.cimmyt.org/news/food-security/. Accessed 2019 Sept 15
Faris JD, Zhang Z, Garvin DF, Xu SS (2014) Molecular and comparative mapping of genes governing spike compactness from wild emmer wheat. Mol Genet Genomics 289(4):641–651
CAS
Article
Google Scholar
Franco M, Lori G, Panelo J, Alonso M, Mirabella NE, Malbrán I, Cendoya M, Pontaroli AC (2021) Using anthesis date as a covariate to accurately assessing type II resistance to Fusarium head blight in field-grown bread wheat. Crop Prot 142:105504. https://doi.org/10.1016/j.cropro.2020.105504
CAS
Article
Google Scholar
Gervais L, Dedryver F, Morlais JY, Bodusseau V, Negre S, Bilous M, Groos C, Trottet M (2003) Mapping of quantitative trait loci for field resistance to Fusarium head blight in an European winter wheat. Theor Appl Genet 106:961–970. https://doi.org/10.1007/s00122-002-1160-5
CAS
Article
PubMed
Google Scholar
Groth J, Ozmon E, Busch R (1999) Repeatability and relationship of incidence and severity measures of scab of wheat caused by Fusarium graminearum in inoculated nurseries. Plant Dis 83(11):1033–1038
CAS
Article
Google Scholar
Hallauer AR, Carena MJ, Miranda Filho JD (2010) Quantitative genetics in maize breeding, vol 6. Springer Science & Business Media, Iowa
Google Scholar
Kang Z, Buchenauer H (2000) Ultrastructural and immunocytochemical investigation of pathogen development and host responses in resistant and susceptible wheat spikes infected by Fusarium culmorum. Physiol Mol Plant Pathol 57(6):255–268
CAS
Article
Google Scholar
Kendrick B (1992) Mycotoxins in food and feeds. In: Kendrick B (ed) The fifth kingdom. Mycologue, Waterloo, Ontario, Canada, pp 316–331
Google Scholar
Kubo K, Fujita M, Kawada N, Nakajima T, Nakamura K, Maejima H, Uushiyama T, Hatta K, Matsunaka H (2013) Minor differences in anther extrusion affect resistance to Fusarium head blight in wheat. J Phytopathol 161(5):308–314. https://doi.org/10.1111/jph.12060
CAS
Article
Google Scholar
Liu S, Abate Z, Lu H, Musket T, Davis GL, McKendry A (2007) QTL associated with Fusarium head blight resistance in the soft red winter wheat Ernie. Theor Appl Genet 115(3):417–427. https://doi.org/10.1007/s00122-007-0577-2
CAS
Article
PubMed
Google Scholar
Lori GA, Sisterna MN, Haidukowski M, Rizzo I (2003) Fusarium graminearum and deoxynivalenol contamination in the durum wheat area of Argentina. Microbiol Res 158(1):29–35. https://doi.org/10.1078/0944-5013-00173
CAS
Article
PubMed
Google Scholar
Malbrán I, Lori GA (2014) Enfermedades fúngicas de la espiga y la semilla. In: Cordo CA, Sisterna MM (eds) Enfermedades del trigo: avances científicos en la Argentina. Edulp, La Plata, Argentina, pp 59–79
Google Scholar
Malbrán I, Mourelos C, Girotti J, Aulicino M, Balatti P, Lori G (2012) Aggressiveness variation of Fusarium graminearum isolates from Argentina following point inoculation of field grown wheat spikes. Crop Protect 42:234–243. https://doi.org/10.1016/j.cropro.2012.05.025
Article
Google Scholar
Malbrán I, Mourelos C, Girotti J, Balatti P, Lori G (2014) Toxigenic capacity and trichothecene production by Fusarium graminearum isolates from Argentina and their relationship with aggressiveness and fungal expansion in the wheat spike. Phytopathology 104(4):357–364. https://doi.org/10.1094/PHYTO-06-13-0172-R
Article
PubMed
Google Scholar
Martino DL, Abbate PE, Cendoya MG, Gutheim F, Mirabella NE, Pontaroli AC (2015) Wheat spike fertility: inheritance and relationship with spike yield components in early generations. Plant Breed 134(3):264–270. https://doi.org/10.1111/pbr.1226
Article
Google Scholar
Mazzilli S, Pérez C, Ernst O (2007) Fusariosis de la espiga en trigo: características de la enfermedad y posibilidades de uso de modelos de predicción para optimizar el control químico. Agrociencia 11(1):11–21
Google Scholar
McMullen M, Jones R, Gallenberg D (1997) Scab of wheat and barley: a re-emerging disease of devastating impact. Plant Dis 81(12):1340–1348. https://doi.org/10.1094/PDIS.1997.81.12.1340
Article
PubMed
Google Scholar
Mesterhazy A (1995) Types and components of resistance to Fusarium head blight of wheat. Plant Breed 114(5):377–386. https://doi.org/10.1111/j.1439-0523.1995.tb00816.x
Article
Google Scholar
Milliken GA, Johnson DE (2001) Analysis of messy data volume III: analysis of covariance. Chapman and Hall/CRC
Book
Google Scholar
Mirabella N, Abbate P, Ramirez I, Pontaroli A (2016) Genetic variation for wheat spike fertility in cultivars and early breeding materials. J Agri Sci 154(1):13–22. https://doi.org/10.1017/S0021859614001245
Article
Google Scholar
Mourelos C, Malbrán I, Balatti P, Ghiringhelli P, Lori G (2014) Gramineous and non-gramineous weed species as alternative hosts of Fusarium graminearum, causal agent of Fusarium head blight of wheat, in Argentina. Crop Prot 65:100–104. https://doi.org/10.1016/j.cropro.2014.07.013
Article
Google Scholar
Piepho H, Möhring J, Melchinger A, Büchse A (2008) BLUP for phenotypic selection in plant breeding and variety testing. Euphytica 161(1–2):209–228. https://doi.org/10.1007/s10681-007-9449-8
Article
Google Scholar
Pinheiro J, Bates D, DebRoy S, Sarkar D, Team RC (2013) nlme: Linear and nonlinear mixed effects models. R Package Version 3(1):111
Google Scholar
Pugh GW, Johann H, Dickson J (1933) Factors affecting infection of Wheat heads by Gibberella saubiuetii. J Agri Res 46(9):771–797
R Core Team (2013) R: a language and environment for statistical computing, R Core Team, 3.0.2. R Foundation for Statistical Computing, Vienna, Austria
Google Scholar
Rudd JC, Horsley RD, McKendry AL, Elias EM (2001) Host plant resistance genes for Fusarium head blight: sources, mechanisms, and utility in conventional breeding systems. Crop Sci 41:620–627. https://doi.org/10.2135/cropsci2001.413620x
Article
Google Scholar
Schroeder H, Christensen J (1963) Factors affecting resistance of wheat to scab caused by Gibberella zeae. Phytopathology 53(1):831–838
Google Scholar
Shaner G, Finney R (1977) The effect of nitrogen fertilization on the expression of slow-mildewing resistance in Knox wheat. Phytopathology 67(8):1051–1056
CAS
Article
Google Scholar
Skinnes H, Skegman K, Bjornstad A, Tarkegne Y, Maroy AGM (2005) Associations between anther extrusion and Fusarium head blight in European wheat. In: 4th Canadian Workshop on Fusarium Head Blight. Ontario, Canada, p 55
Somers DJ, Fedak G, Savard M (2003) Molecular mapping of novel genes controlling Fusarium head blight resistance and deoxynivalenol accumulation in spring wheat. Genome 46(4):555–564. https://doi.org/10.1139/g03-033
CAS
Article
PubMed
Google Scholar
Steiner B, Lemmens M, Griesser M, Scholz U, Schondelmaier J, Buerstmayr H (2004) Molecular mapping of resistance to Fusarium head blight in the spring wheat cultivar Frontana. Theor Appl Genet 109:215–224. https://doi.org/10.1007/s00122-004-1620-1
CAS
Article
PubMed
Google Scholar
Steiner B, Buerstmayr M, Wagner C, Danler A, Eshonkulov B, Ehn M, Buerstmayr H (2019) Fine-mapping of the Fusarium head blight resistance QTL Qfhs.ifa-5A identifies two resistance QTL associated with anther extrusion. Theor Appl Genet 132(7):2039–2053. https://doi.org/10.1007/s00122-019-03336-x
CAS
Article
PubMed
PubMed Central
Google Scholar
Sutton J (1982) Epidemiology of wheat head blight and maize ear rot caused by Fusarium graminearum. Can J Plant Path 4(2):195–209. https://doi.org/10.1080/07060668209501326
Article
Google Scholar
Wiese MV (1987) Compendium of wheat diseases. American Phytopathological Society, St. Paul, Minnesota, USA
Google Scholar
Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14(6):415–421. https://doi.org/10.1111/j.1365-3180.1974.tb01084.x
Article
Google Scholar
Zhang W, Francis T, Gao P, Boyle K, Jiang F, Eudes F, Cuthbert R, Sharpe A, Fobert PR (2018) Genetic characterization of type II Fusarium head blight resistance derived from transgressive segregation in a cross between Eastern and Western Canadian spring wheat. Mol Breed 38(1):13
CAS
Article
Google Scholar
Zhu H, Gilchrist L, Hayes P, Kleinhofs A, Kudrna D, Liu Z, Prom L, Steffenson B, Toojinda T, Vivar H (1999) Does function follow form? Principal QTLs for Fusarium head blight (FHB) resistance are coincident with QTLs for inflorescence traits and plant height in a doubled haploid population of barley. Theor Appl Genet 99:1221–1232. https://doi.org/10.1007/s001220051328
CAS
Article
Google Scholar