Skip to main content

Map overlapping of QTL for resistance to Fusarium ear rot and associated traits in maize

Abstract

Mapping QTL for disease resistance and associated traits is important to develop maize (Zea mays L.) hybrids less susceptible to ear rots. A biparental mapping population of 298 F5 recombinant inbreds (RIs), obtained from the cross between LP4637 (moderately resistant) and L4674 (susceptible), was genotyped with 250 single nucleotide polymorphism (SNP) markers. A set of 120 of those RIs, selected by uniRec procedure, and parental inbreds were phenotyped in two environments for pericarp thickness, pericarp content of trans-ferulic acid (tFA) and resistance to Fusarium ear rot. The set of parental inbreds exhibited an average density of one marker every 5 cM, 6% of a residual heterozygosity, and 5% of lost data. Moderate negative genotypic correlations were observed between disease severity and pericarp thickness (rG = − 0.31) and between disease severity and pericarp content of tFA (rG = − 0.32). Quantitative trait loci were mapped for disease severity in bins 1.06, 2.03, 3.06, 5.04, 5.07 and 6.05, for pericarp thickness in bins 1.06, 2.03, 4.02 and 4.05, and for pericarp content of tFA in bins 2.03, 3.06, 4.05 and 6.05. The joint models, including some additive-by-additive epistasis gene effects, explained 56.0–58.2%, 46.6–45.5%, 41.4–47.1% of the phenotypic variability for disease severity, pericarp thickness and pericarp content of tFA, respectively, depending on the environment. The most important QTL for the three traits overlapped in bin 2.03 indicating that genes from this genomic region might contribute to the expression of disease resistance by increasing thickness and tFA content of the pericarp.

This is a preview of subscription content, access via your institution.

References

  1. Assabgui RA, Reid LM, Hamilton RI, Arnason JT (1993) Correlation of kernel (E)- ferulic acid content of maize with resistance to Fusarium graminearum. Phytopathology 83:949–953

    CAS  Google Scholar 

  2. Bakan B, Bily AC, Melcion D, Cahagnier B, Regnault-Roger C, Philogène BJR, Richard-Molard D (2003) Possible role of plant phenolics in the production of trichothecenes by Fusarium graminearum strains on different fractions of maize kernels. J Agric Food Chem 51:2826–2831

    CAS  PubMed  Google Scholar 

  3. Beavis WD (1998) QTL analyses: power, precision, and accuracy. In: Paterson AH (ed) Molecular dissection of complex traits. CRC Press, New York, pp 145–162

    Google Scholar 

  4. Beekrum S, Govinden R, Padayachee T, Odhav B (2003) Naturally occurring phenols: a detoxification strategy for fumonisin B1. Food Addit Contam 20:490–493

    CAS  PubMed  Google Scholar 

  5. Beti JA, Phillips TW, Smalley EB (1995) Effects of maize weevils (Coleoptera: Curculionidae) on production of aflatoxin B1 by Aspergillus flavus in stored corn. J Econ Entomol 88:1776–1782

    CAS  PubMed  Google Scholar 

  6. Bily AC, Reid L, Taylor JH, Johnston D, Malouin C, Burt AJ, Bakan B, Regnault-Roger C, Pauls KPT, Arnason JT, Philogene BJR (2003) Dehydrodimers of ferulic acid in maize grain pericarp and aleurone: resistance factors to Fusarium graminearum. Phytopathology 93:712–719

    CAS  PubMed  Google Scholar 

  7. Campos Bermudez VA, Fauguel CM, Tronconi MA, Casati P, Presello DA, Andreo CS (2013) Transcriptional and metabolic changes associated to the infection by Fusarium verticillioides in maize inbreds with contrasting ear rot resistance. PLoS ONE 8:61580–61590

    Google Scholar 

  8. Chen J, Ding J, Li H, Li Z, Sun X, Li J, Dai X, Dong H, Song W, Chen W, Wang R, Xia Z, Wu J (2012) Detection and verification of quantitative trait loci for resistance to Fusarium ear rot in maize. Mol Breed 30:1649–1656

    CAS  Google Scholar 

  9. Choe ES, Rocheford TR (2012) Genetic and QTL analysis of pericarp thickness and ear architecture traits of Korean waxy corn germplasm. Euphytica 183:243–260

    Google Scholar 

  10. De la Parra C, Serna Saldívar SO, Hai LR (2007) Effect of processing on the phytochemical profiles and antioxidant activity of corn for production of masa, tortillas, and tortilla chips. J Agric Food Chem 55:4177–4183

    PubMed  Google Scholar 

  11. De la Torre-Hernández MA, Sánchez-Rangel D, Galeana-Sánchez E, De la Parra JP (2014) Fumonisinas – Síntesis y función en la interacción Fusarium verticillioides-maíz. Revista Especializada en Ciencias Químico-Biológicas 17:77–91

    Google Scholar 

  12. Enerson PM, Hunter RB (1980) Response of maize hybrids to artificially inoculated ear mold incited by Gibberella zeae. Can J Plant Sci 60:1463

    Google Scholar 

  13. Fauguel CM, Campos Bermudez VA, Iglesias J, Fernandez M, Farroni A, Andreo CS, Presello DA (2017) Volatile compounds released by maize grains and silks in response to infection by Fusarium verticillioides and its association with pathogen resistance. Plant Pathol 66:1128–1138

    CAS  Google Scholar 

  14. Ferreira-Castro FL, Aquino S, Greiner R, Ribeiro D, Reis T, Corrêa B (2007) Effects of gamma radiation on maize samples contaminated with Fusarium verticillioides. Appl Radiat Isot 65:927–933

    CAS  PubMed  Google Scholar 

  15. Ferruz E, Loran S, Herrera M, Gimenez I, Bervis N, Barcena C, Carramiñana JJ, Juan T, Herrera A, Ariño A (2016) Inhibition of Fusarium growth and mycotoxin production in culture medium and in maize kernels by natural phenolic acids. J Food Prot 79:1753–1758

    CAS  PubMed  Google Scholar 

  16. García-Lara S, Bergvinson DJ, Burt AJ, Ramputh AI, Díaz-Pontones DM, Arnason JT (2004) The role of pericarp cell wall components in maize weevil resistance. Crop Sci 44:1560–1567

    Google Scholar 

  17. García-Lara S, Burt AJ, Arnason JT, Bergvinson DJ (2010) QTL mapping of tropical maize grain components associated with maize weevil resistance. Crop Sci 50:815–825

    Google Scholar 

  18. Giomi GM, Kreff ED, Iglesias J, Fauguel CM, Fernandez M, Oviedo MS, Presello DA (2016) Quantitative trait loci for Fusarium and Gibberella ear rot resistance in Argentinian maize germplasm. Euphytica 211:287–294

    CAS  Google Scholar 

  19. Hallauer AR, Miranda Filho JB (1988) Quantitative Genetics in Maize Breeding, 2nd edn. Iowa State University Press, Iowa

    Google Scholar 

  20. Headrick JM, Pataky JK (1991) Maternal influence on the resistance of sweet corn lines to kernel infection by Fusarium moniliforme. Phytopathology 81:268–274

    Google Scholar 

  21. Hoenisch R, Davis RM (1994) Relationship between kernel pericarp thickness and susceptibility to Fusarium ear rot in field corn. Plant Dis 78:517–519

    Google Scholar 

  22. Jannink JL (2005) Selective phenotyping to accurately map quantitative trait loci. Crop Sci 45:901–908

    CAS  Google Scholar 

  23. Jiang C, Zeng ZB (1995) Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics 140:1111–1127

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Jin C, Lan H, Attie AD, Churchill GA, Bulutuglo D, Yandell BS (2004) Selective phenotyping for increased efficiency in genetic mapping studies. Genetics 168:2285–2293

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Kelley RY, Williams WP, Mylroie JE, Boykin DL, Harper JW, Windham GL, Ankala A, Shan X (2012) Identification of maize genes associated with host plant resistance or susceptibility to Aspergillus flavus infection and aflatoxin accumulation. PLoS ONE 7(5):e36892

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim DO, Chun OK, Kim YJ, Moon HY, Lee CY (2003) Quantification of polyphenolics and their antioxidant capacity in fresh plums. J Agric Food Chem 51:6509–6515

    CAS  PubMed  Google Scholar 

  27. Lorieux M (2007). Map Disto, a free user-friendly program for computing genetic maps. In: Computer demonstration (P958) given at the plant and animal genome XV conference, San Diego, CA

  28. Mac Donald MJ, G.B. D´Cunha. (2007) A modern view of phenylalanine ammonia lyase. Biochem Cell Biol 85:273–282

    CAS  Google Scholar 

  29. Malosetti M, Ribaut JM, Vargas M, Crossa J, Van Eeuwijk FA (2008) A multi-trait multi-environment QTL mixed model with an application to drought and nitrogen stress trials in maize (Zea mays L.). Euphytica 161:241–257

    Google Scholar 

  30. Maschietto V, Colombi C, Pirona R, Pea G, Strozzi F, Marocco A, Rossini L, Lanubile A (2017) QTL mapping and candidate genes for resistance to Fusarium ear rot and fumonisin contamination in maize. BMC Plant Biol 17:20. https://doi.org/10.1186/s12870-017-0970-1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. McKeehen JD, Busch RH, Fulcher RG (1999) Evaluation of wheat (Triticum aestivum L.) phenolic acids during grain development and their contribution to Fusarium resistance. J Agric Food Chem 47:1476–1482

    CAS  PubMed  Google Scholar 

  32. Mrode RA (2005) Linear models for the prediction of animal breeding values, 2nd edn. CAB International, Wallingford

    Google Scholar 

  33. Park KJ, Sa KJ, Koh H-J, Lee JK (2013) QTL analysis for eating quality-related traits in an F2:3 population derived from waxy corn × sweet corn cross. Breed Sci 63:325–332

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Pérez-Brito D, Jeffers D, González-de-León D, Khairallah M, Cortés-Cruz M, Velázquez-Cardelas G, Azpíroz-Rivero S, Srinivasan G (2001) QTL mapping of Fusarium moniliforme ear rot resistance in Highland maize, México. Agrociencia 35:181–196

    Google Scholar 

  35. Piepho HP, Möhring J (2011) On estimation of genotypic correlations and their standard errors by multivariate REML using the MIXED Procedure of the SAS System. Crop Sci 51:2449–2454

    Google Scholar 

  36. Piepho HP, Möhring J, Melchinger AE, Büchse A (2008) BLUP for phenotypic selection in plant breeding and variety testing. Euphytica 161:209–228

    Google Scholar 

  37. Presello DA, Pereyra AO, Iglesias J, Fauguel CM, Sampietro DA, Eyherabide GH (2011) Responses to selection of S 5 inbreds for broad-based resistance to ear rots and grain mycotoxin contamination caused by Fusarium spp. in maize. Euphytica 178:23–29

    CAS  Google Scholar 

  38. Presello DA, Botta G, Iglesias J, Eyhérabide GH (2008) Effect of disease severity on yield and grain fumonisin content of maize hybrids inoculated with Fusarium verticillioides. Crop Prot 27:572–576

    CAS  Google Scholar 

  39. Presello DA, Reid LM, Butler G, Mather DE (2005) Pedigree selection for gibberella ear rot resistance in maize populations. Euphytica 143:1–8

    Google Scholar 

  40. Robertson LA, Kleinschmidt CE, White DG, Payne GA, Maragos CM, Holland JB (2006a) Heritabilities and correlations of Fusarium ear rot resistance and fumonisin contamination resistance in two maize populations. Crop Sci 46:353–361

    CAS  Google Scholar 

  41. Robertson LA, Jines MP, Balint-Kurti PJ, Kleinschmidt CE, White DG, Payne GA, Maragos CM, Molnár TL, Holland JB (2006b) QTL mapping for fusarium ear rot and fumonisin contamination resistance in two maize populations. Crop Sci 46:1734–1743

    Google Scholar 

  42. Sampietro DA, Fauguel CM, Vattuone M, Presello DA, Catalán C (2013) Phenylpropanoids from maize pericarp: Resistance factors to kernel infection and fumonisin accumulation by Fusarium verticillioides. Eur J Plant Pathol 135:105–113

    CAS  Google Scholar 

  43. Sampietro DA, Vattuone M, Presello DA, Fauguel CM, Catalán C (2009) The pericarp and its surface wax layer in maize kernels as resistance factors to fumonisin accumulation by Fusarium verticilloides. Crop Prot 28:196–200

    CAS  Google Scholar 

  44. SAS Institute (1999) The SAS Online Doc v.8. SAS Institute, Cary, NC

  45. Scott GE, King SB (1984) Site of action of factors for resistance to Fusarium moniliforme in maize. Plant Dis 68:804–806

    Google Scholar 

  46. Viana JMS, Sobreira FM, de Resende MDV, Faira VR (2010) Multi-trait BLUP in half-sib selection of annual crops. Plant Breeding 129:599–604

    Google Scholar 

  47. Wang S, Basten CJ, Zeng ZB (2011) Windows QTL cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC

    Google Scholar 

  48. Wolf MJ, Cull IM, Helm JL, Zuber MS (1969) Measuring thickness of excised mature corn pericarp. Agron J 61:777–779

    Google Scholar 

  49. Xu S (2003) Theoretical basis of the beavis effect. Genetics 165:2259–2268

    PubMed  PubMed Central  Google Scholar 

  50. Yu J, Vasanthan T, Temelli F (2001) Analysis of phenolic acids in barley by high performance liquid-chromatography. J Agric Food Chem 49:4352–4358

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ariel Giomi for computational support of selective phenotyping. Pioneer Argentina for SNP analysis. Santiago Alvarez Prado and Gerardo Cervigni for advices in the molecular marker analysis. This research was funded by INTA Programa Nacional Cereales y Oleaginosas Grants PNCYO-1127023 and PNCYO-1127043, and by SECYT Grant PICT 77/07.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Daniel Alberto Presello.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Giomi, G.M., Sampietro, D.A., Velazco, J.G. et al. Map overlapping of QTL for resistance to Fusarium ear rot and associated traits in maize. Euphytica 217, 81 (2021). https://doi.org/10.1007/s10681-021-02814-y

Download citation

Keywords

  • Maize
  • Fusarium verticillioides
  • Pericarp thickness
  • Phenolic compounds