Skip to main content
Log in

Genome-wide association analysis of fiber fineness and yield in ramie (Boehmeria nivea) using SLAF-seq

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Ramie (Boehmeria nivea L. Gaudich) is a major natural fiber crop cultivated in East Asia. The improvement of its fiber yield and fineness are important breeding goals. Fiber yield is a complex quantitative trait comprising ramet number, stem diameter, plant height, skin thickness, and fiber percentage. The fiber fineness is a crucial trait for ramie fiber quality. However, there are few association studies for fiber yield traits and fiber fineness on ramie, and lack high-density SNP maps in natural ramie population. Here, a panel of 112 core ramie germplasms were genotyped by 215,376 consistent single-nucleotide polymorphisms (SNPs) from specific-locus amplified-fragment sequencing (SLAF-seq), and used for genome-wide association study of fiber fineness and yield. Subsequently, the genetic diversity, linkage disequilibrium (LD), and population structure was conducted based on 215,376 SNPs. Population cluster analysis disclosed five subpopulations. Neighbor-joining (NJ) analysis revealed three major clusters. No obvious relationships were identified between them and their geographic origins. The genome-wide LD decayed to r2 = 0.1 was ~ 11.75 kbp in physical distance. One, seven, one, seven, and twenty-seven significant SNP marker associations were detected for fiber fineness (third season), stem diameter (third season), stem skin thickness (third season), fiber percentage (second season), and fiber percentage (third season), respectively. Two promising candidate genes, whole_GLEAN_10029622 and whole_GLEAN_10029638 resided in the significant trait-SNP association for fiber fineness (third season), which annotated as a cotton fiber-expressed protein and an Arabidopsis thaliana homebox protein ATH1, respectively and validated by qPCR. The identified loci or genes for fiber fineness and yield may provide the basis for future research on fiber fineness and yield and marker-assisted selection breeding for ramie.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The genotypic data used in this study are included in the manuscript and supplementary materials.

References

  • Alexander DH, Novembre J, Lange K (2009) Fast model-based estimation of ancestry in unrelated individuals. Genome Res 19:1655–1664

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Buckler E, Gore M (2007) An Arabidopsis haplotype map takes root. Nat Genet 39:1056–1057

    Article  CAS  PubMed  Google Scholar 

  • Chai G, Wang Z, Tang X, Yu L, Qi G, Wang D, Yan X, Kong Y, Zhou G (2014) R2R3-MYB gene pairs in Populus: evolution and contribution to secondary wall formation and flowering time. J Exp Bot 65:4255–4269

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Luan M, Song S, Zou Z, Wang X, Xu Y, Sun Z (2011) Isolation and characterization of EST-SSRs in the Ramie. Afr J Microbiol Res 5:3504–3508

    CAS  Google Scholar 

  • Chen J, Yu R, Liu L, Wang B, Peng D (2016) Large-scale developing of simple sequence repeat markers and probing its correlation with ramie (Boehmeria nivea L.) fiber quality. Mol Genet Genom 291:753–761

    Article  CAS  Google Scholar 

  • Chen K, Luan M, Xiong H, Chen P, Chen J, Gao G, Huang K, Zhu A, Yu C (2018) Genome-wide association study discovered favorable single nucleotide polymorphisms and candidate genes associated with ramet number in ramie (Boehmeria nivea L.). BMC Plant Biol 18:345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:99–510

    Article  CAS  Google Scholar 

  • Edwards D, Batley J, Cogan N, Forster J, Chagne D (2007) Single nucleotide polymorphism discovery. In: Oraguzie N, Rikkerink E, Gardiner S, DeSilva H (eds) Association mapping in plants. Springer, New York, pp 53–76

    Chapter  Google Scholar 

  • Eickmeyer K, Huggins P, Pachter L, Yoshida R (2008) On the optimality of the neighbor-joining algorithm. Algorithm Mol Biol 3:5

    Article  CAS  Google Scholar 

  • Eshed Y, Baum SF, Perea JV, Bowman JL (2001) Establishment of polarity in lateral organs of plants. Curr Biol 11:1251–1260

    Article  CAS  PubMed  Google Scholar 

  • Gore MA, Chia JM, Elshire RJ, Sun Q, Ersoz ES, Hurwitz BL et al (2009) A first-generation haplotype map of maize. Science 326:1115–1117

    Article  CAS  PubMed  Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyses spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620

    Article  CAS  Google Scholar 

  • Hou S, Zhu G, Li Y, Li W, Fu J, Niu E, Li L, Zhang D, Guo W (2018) Genome-wide association studies reveal genetic variation and candidate genes of drought stress related traits in cotton (Gossypium hirsutum L.). Front Plant Sci 9:1276

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y et al (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42:961–967

    Article  CAS  PubMed  Google Scholar 

  • Hufford MB, Xu X, van Heerwaarden J, Pyhäjärvi T, Chia JM, Cartwright RA et al (2012) Comparative population genomics of maize domestication and improvement. Nat Genet 44:808–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang Y, Sakiroglu M, Krom N, Stanton-Geddes J, Wang M, Lee YC, Young ND, Udvardi M (2015) Genome-wide association of drought-related and biomass traits with HapMap SNPs in Medicago truncatula. Plant Cell Environ 38:1997–2011

    Article  CAS  PubMed  Google Scholar 

  • Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq illumina sequencing platform. Appl Environ Microb 79:5112–5120

    Article  CAS  Google Scholar 

  • Lenser T, Theissen G (2013) Molecular mechanisms involved in convergent crop domestication. Trends Plant Sci 18:704–714

    Article  CAS  PubMed  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009a) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078–2079

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li L, Yu X, Thompson A, Guo M, Yoshida S, Asami T, Chory J, Yin Y (2009b) Arabidopsis MYB30 is a direct target of BES1 and cooperates with BES1 to regulate brassinosteroid-induced gene expression. Plant J 58:275–286

    Article  CAS  PubMed  Google Scholar 

  • Li B, Tian L, Zhang J, Huang L, Han F, Yan S, Wang L, Zheng H, Sun J (2014) Construction of a high-density genetic map based on large-scale markers developed by specific length amplified fragment sequencing (SLAF-seq) and its application to QTL analysis for isoflavone content in Glycine max. BMC Genom 15:1086

    Article  CAS  Google Scholar 

  • Lipka AE, Tian F, Wang Q, Peiffer J, Li M, Bradbury PJ, Gore MA, Buckler ES, Zhang Z (2012) GAPIT: genome association and prediction integrated tool. Bioinformatics 28(18):2397–2399

    Article  CAS  PubMed  Google Scholar 

  • Liu T, Zhu S, Fu L, Tang Q, Yu Y, Chen P, Luan M, Wang C, Tang S (2013) Development and characterization of 1,827 expressed sequence tag-derived simple sequence repeat markers for ramie (Boehmeria nivea L gaud). PLoS ONE 8:e603464

    Google Scholar 

  • Liu T, Tang S, Zhu S, Tang Q (2014) QTL mapping for fiber yield-related traits by constructing the first genetic linkage map in ramie (Boehmeria nivea L. Gaud). Mol Breed 34:883–892

    Article  Google Scholar 

  • Liu C, Zhu S, Tang S, Wang H, Zheng X, Chen X, Dai Q, Liu T (2017) QTL analysis of four main stem bark traits using a GBS-SNP-based high-density genetic map in ramie. Sci Rep 7:13458

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    CAS  PubMed  Google Scholar 

  • Lu K, Wang T, Xu X (2016) Genome-wide association analysis of height of podding and thickness of pod canopy in Brassica napus. Acta Agron Sin 42:344–352

    Article  CAS  Google Scholar 

  • Luan M, Qin Z, Chen J, Wang X, Xu Y, Sun Z (2009) Correlation between fiber fineness and expression of bast fiber development related gene FB27 in ramie. Plant Fiber Sci China 31(6):339–343

    Google Scholar 

  • Luan MB, Zou ZZ, Zhu JJ, Wang XF, Xu Y, Ma QH, Sun ZM, Chen JH (2014) Development of a core collection for ramie by heuristic search based on SSR markers. Biotechnol Biotechnol Equip 28(5):798–804

    Article  PubMed  PubMed Central  Google Scholar 

  • Luan MB, Zou ZZ, Zhu J, Wang XF, Xu Y, Sun ZM, Chen JH (2015) Genetic diversity assessment using simple sequence repeats (SSR) and sequence-related amplified polymorphism (SRAP) markers in ramie. Biotechnol Biotechnol Equip 29:624–630

    Article  CAS  Google Scholar 

  • Luan MB, Liu CC, Wang XF, Xu Y, Sun Z, Chen JH (2017) SSR markers associated with fiber yield traits in ramie (Boehmeria nivea L. Gaudich). Ind Crop Prod 107:439–445

    Article  CAS  Google Scholar 

  • Luan MB, Jian JB, Chen P, Chen JH, Chen JH, Gao Q et al (2018) Draft genome sequence of ramie, Boehmeria nivea (L.) Gaudich. Mol Ecol Resour 18:639–645

    Article  CAS  PubMed  Google Scholar 

  • McAbee JM, Hill TA, Skinner DJ, Izhaki A, Hauser BA, Meister RJ, Venugopala RG, Meyerowitz EM, Bowman JL, Gasser CS (2006) ABERRANT TESTA SHAPE encodes a KANADI family member, linking polarity determination to separation and growth of Arabidopsis ovule integuments. Plant J 46:522–531

    Article  CAS  PubMed  Google Scholar 

  • McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A et al (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller MR, Dunham JP, Amores A, Cresko WA, Johnson EA (2007) Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Res 17:240–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Myles S, Peiffer J, Brown PJ, Ersoz ES, Zhang Z, Costich DE, Buckler ES (2009) Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell 21:2194–2202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogura T, Busch W (2015) From phenotypes to causal sequences: using genome wide association studies to dissect the sequence basis for variation of plant development. Curr Opin Plant Biol 23:98–108

    Article  CAS  PubMed  Google Scholar 

  • Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE (2012) Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE 7:e37135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poland JA, Brown PJ, Sorrells ME, Jannink JL (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE 7:e32253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Proveniers M, Rutjens B, Brand M, Smeekens S (2007) The Arabidopsis TALE homeobox gene ATH1 controls floral competency through positive regulation of FLC. Plant J 52:899–913

    Article  CAS  PubMed  Google Scholar 

  • Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Putterill J, Robson F, Lee K, Simon R, Coupland G (1995) The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80:847–857

    Article  CAS  PubMed  Google Scholar 

  • Qi Z, Huang L, Zhu R, Xin D, Liu C, Han X et al (2014) A high-density genetic map for soybean based on specific length amplified fragment sequencing. PLoS ONE 9:e104871

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt SR, Doebley J, Kresovich S, Goodman MM, Buckler ET (2001) Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Nat Acad Sci USA 98:11479–11484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rychlik W (2007) OLIGO 7 primer analysis software. Methods Mol Biol 402:35–60

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Shaun S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575

    Article  CAS  Google Scholar 

  • Simko I (2004) One potato, two potato: haplotype association mapping in autotetraploids. Trends Plant Sci 9:441–448

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Liu D, Zhang X, Li W, Liu H, Hong W et al (2013) SLAF-seq: an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS ONE 8:e58700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Qin F (2017) Genome-wide association study reveals natural variations contributing to drought resistance in crops. Front Plant Sci 8:1110

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang HM, Wang X (2004) Evaluation of the fineness of degummed bast fibers. Fiber Polym 5:171–176

    Article  CAS  Google Scholar 

  • Wei Q, Wang Y, Qin X, Zhang Y, Zhang Z, Wang J, Li J, Lou Q, Chen J (2014) An SNP-based saturated genetic map and QTL analysis of fruit-related traits in cucumber using specific-length amplified fragment (SLAF) sequencing. BMC Genom 15:1158

    Article  CAS  Google Scholar 

  • Xiong HP, Jiang J, Yu C, Guo Y (1998) Relation between yield-related traits and yield in ramie. Acta Agron Sin 24:155–160

    Google Scholar 

  • Yu X, Li L, Zola J, Aluru M, Ye H, Foudree A et al (2011) A brassinosteroid transcriptional network revealed by genome-wide identification of BESI target genes in Arabidopsis thaliana. Plant J 65:634–646

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Wang L, Xin H, Li D, Ma C, Ding X, Hong W, Zhang X (2013) Construction of a high-density genetic map for sesame based on large scale marker development by specific length amplified fragment (SLAF) sequencing. BMC Plant Biol 13:141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Z, Shang H, Shi Y, Huang L, Li J, Ge Q et al (2016a) Construction of a high-density genetic map by specific locus amplified fragment sequencing (SLAF-seq) and its application to Quantitative Trait Loci (QTL) analysis for boll weight in upland cotton (Gossypium hirsutum). BMC Plant Biol 16:79

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Z, Wei T, Zhong Y, Li X, Huang J (2016b) Construction of a high-density genetic map of Ziziphus jujube Mill. using genotyping by sequencing technology. Tree Genet Genomes 12:76

    Article  Google Scholar 

  • Zhang S, Chen X, Lu C, Ye J, Zou M, Lu K et al (2018) Genome-wide association studies of 11 agronomic traits in Cassava (Manihot esculenta Crantz). Front Plant Sci 9:503

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou Z, Jiang Y, Wang Z, Gou Z, Lyu J, Li W et al (2015) Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol 33:125–408

    Article  CAS  Google Scholar 

  • Zhou Q, Zhou C, Zheng W, Mason AS, Fan S, Wu C, Fu D, Huang Y (2017) Genome-Wide SNP markers based on SLAF-Seq uncover breeding traces in rapeseed (Brassica napus L.). Front Plant Sci 8:648

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu SY, Liu TM, Dai Q, Wu D, Zheng X, Tang S, Chen J (2017) Genetic structure and relationships of an associated population in ramie (Boehmeria nivea L. Gaud) evaluated by SSR markers. Biotechnol Biotechnol Equip 31:36–44

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Jun Liu for the collecting of sample tissues, and Qing Tang on the paper revise.

Funding

This study was financially supported by the National Natural Science Foundation of China (Grant Nos. 31671744 and 31471547), the Hunan Provincial Natural Science Foundation of China (Grant No. 2018JJ2465), and the National Modern Agro-industry Technology Research System (Grant No. CARS-19-E04).

Author information

Authors and Affiliations

Authors

Contributions

KH, YS, ML, and JC conceived and designed the experiments; KH, YS, GP, YZ, ZS, JN, JC, ML, and JC performed the experiments; and KH, YS, ML, and JC analyzed the data and wrote the paper.

Corresponding author

Correspondence to Mingbao Luan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. S1 Quantile–quantile (Q–Q) plot of GLM-Q model. (JPEG 121 kb)

Supplementary Fig. S2 Quantile–quantile (Q–Q) plot of MLM-Q + K model. (JPEG 119 kb)

Supplementary Fig. S3 Quantile–quantile (Q–Q) plot of EMMAX model. (JPEG 117 kb)

Supplementary Fig. S4 Manhattan plots and Q–Q plots of SNP markers for fiber fineness of third season. (JPEG 127 kb)

Supplementary Fig. S5 Manhattan plots and Q–Q plots of SNP markers for fiber percentage of second season. (JPEG 114 kb)

Supplementary Fig. S6 Manhattan plots and Q–Q plots of SNP markers for fiber percentage of third season. (JPEG 151 kb)

Supplementary Fig. S7 Relative expression of candidate genes of stem diameter in third season. (PNG 75 kb)

Supplementary Fig. S8 Relative expression of candidate genes of SKT in third season. (PNG 46 kb)

Supplementary Fig. S9 Relative expression of candidate genes of PC of second season. (PNG 88 kb)

Supplementary Table S1 Ramie germplasms using in this study. (XLSX 12 kb)

Supplementary Table S2 Primers for qRT-PCR. (XLSX 8 kb)

Supplementary Table S3 Information of 133 ramie accessions for validation SNP marker of fiber fineness. (XLSX 16 kb)

Supplementary Table S4 LD decay value among scaffolds. (XLSX 9 kb)

Supplementary Table S5 Associated significant SNP-traits by EMMAX model. (XLSX 43 kb)

10681_2020_2757_MOESM15_ESM.xlsx

Supplementary Table S6 Function annotation of candidate genes from the significant SNP-trait of FF of third season. (XLSX 17 kb)

Supplementary Table S7 Candidate genes of significant SNP-trait of RSD of third season. (XLSX 49 kb)

10681_2020_2757_MOESM17_ESM.xlsx

Supplementary Table S8 Function annotation of candidate genes from the significant SNP-trait of SKT of third season. (XLSX 17 kb)

Supplementary Table S9 The significant SNP markers association with FP of second season. (XLSX 41 kb)

Supplementary Table S10 The significant SNP markers association with FP of third season. (XLSX 107 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, K., Shi, Y., Pan, G. et al. Genome-wide association analysis of fiber fineness and yield in ramie (Boehmeria nivea) using SLAF-seq. Euphytica 217, 22 (2021). https://doi.org/10.1007/s10681-020-02757-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-020-02757-w

Keywords

Navigation