Skip to main content

Advertisement

Log in

Synthetic hexaploid wheat as a source of novel genetic loci for aluminium tolerance

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Aluminium (Al3+) tolerance is second only to drought tolerance for its importance as an agronomic trait in many parts of the world. In wheat (Triticum aestivum L.), Al3+ tolerance is largely conditioned by a single gene, TaALMT1, but given the diverse origins of tolerant genotypes, it is possible that other chromosomes may harbour genes that confer Al3+ tolerance. The large genetic diversity present in synthetic hexaploid wheat (SHW) prompted the objective in this study, which was to evaluate SHW as a source of novel genetic loci linked to Al3+ tolerance. We evaluated 300 SHW accessions using the haematoxylin staining method, and a genome-wide association analysis (GWAS) using 6575 markers generated from traditional diversity-arrays and genotyping-by-sequencing genotyping platforms and from TaALMT1 gene specific simple sequence repeat polymorphisms. The GWAS detected a set of 24 loci located to chromosomes 1B, 1D, 2A, 2B, 4A, 4D, 5A, 5B, 6A, 6D and 7A that showed statistically significant association with Al3+ tolerance. We leveraged the available high-quality annotation data of the wheat genome to identify candidate genes localised to within 1.6 Kb of the identified markers. Besides markers for TaALMT1, MATE and NRAMP, identified markers were located close to known transcription factors (C2H2 zinc finger protein) and novel candidate genes that encode ABC transporter-like protein, glutathione synthetase, Blue copper protein and expansin proteins. In summary, our results showed that Al3+ tolerance is present in SHW but is genetically complex and appeared to involve interactions between the major TaALMT1 gene and other gene loci.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andreescu C, Avendano S, Brown SR, Hassen A, Lamont SJ, Dekkers JC (2007) Linkage disequilibrium in related breeding lines of chickens. Genetics 177:2161–2169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aniol A, Gustafson JP (1984) Chromosome location of genes controlling aluminum tolerance in wheat, rye, and triticale. Can J Genet Cytol 26:701–705

    Article  Google Scholar 

  • Barcelo J, Poschenrieder C (2002) Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminium toxicity and resistance: a review. Environ Exp Bot 48:75–92

    Article  CAS  Google Scholar 

  • Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265

    Article  CAS  PubMed  Google Scholar 

  • Basirat M, Mousavi SM, Abbaszadeh S, Ebrahimi M, Zarebanadkouki M (2019) The rhizosheath: a potential root trait helping plants to tolerate drought stress. Plant Soil 445:565–575

    Article  CAS  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300

    Google Scholar 

  • Berzonsky WA (1992) The genomic inheritance of Aluminium tolerance in 'Atlas 66' wheat. Genome 35:689–693

    Article  Google Scholar 

  • Borrill P, Ramirez-Gonzalez R, Uauy C (2016) expVIP: a customizable RNA-seq data analysis and visualization platform. Plant Physiol 170:2172–2186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breseghello F, Sorrells ME (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L. Thell.) cultivars. Genetics 172:1165–1177

    Article  PubMed  PubMed Central  Google Scholar 

  • Buels R, Yao E, Diesh CM, Hayes RD, Munoz-Torres M, Helt G, Goodstein DM, Elsik CG, Lewis SE, Stein L, Holmes IH (2016) JBrowse: a dynamic web platform for genome visualization and analysis. Genome Biol 17:66

    Article  PubMed  CAS  Google Scholar 

  • Cai S, Bai GH, Zhang D (2008) Quantitative trait loci for aluminium resistance in Chinese wheat landrace FSW. Theor Appl Genet 117:49–56

    Article  CAS  PubMed  Google Scholar 

  • Carver BF, Ownby JD (1995) Acid soil tolerance in Wheat. Adv in Agron 54:117–173

    Article  CAS  Google Scholar 

  • Cosic T, Poljak M, Custic M, Rengel Z (1994) Aluminium tolerance of durum wheat germplasm. Euphytica 78:239–243

    Article  CAS  Google Scholar 

  • Covarrubias-Pazaran G (2016) Genome-assisted prediction of quantitative traits using the R package sommer. PLoS ONE 11:e0156744

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dai J, Bai G, Zhang D, Hong D (2013) Validation of quantitative trait loci for aluminum tolerance in Chinese wheat landrace FSW. Euphytica 192:171–179

    Article  CAS  Google Scholar 

  • Delhaize E, Craig S, Beaton CD, Bennet RJ, Jagadish VC, Randall PJ (1993) Aluminum tolerance in wheat (Triticum aestivum L.) (I. Uptake and distribution of aluminum in root apices). Plant Physiol 103:685–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delhaize E, Rathjen TM, Cavanagh CR (2015) The genetics of rhizosheath size in a multiparent mapping population of wheat. J Exp Bot 66:4527–4536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emebiri LC, Ogbonnaya FC (2015) Exploring the synthetic hexaploid wheat for novel sources of tolerance to excess boron. Mol Breed 35:68

    Article  CAS  Google Scholar 

  • Emebiri LC, Oliver JR, Mrva K, Mares D (2010) Association mapping of late maturity α-amylase (LMA) activity in a collection of synthetic hexaploid wheat. Molecular Breed 26:39–49

    Article  CAS  Google Scholar 

  • Ezaki B, Sasaki K, Matsumoto H, Nakashima S (2005) Functions of two genes in aluminium (Al) stress resistance: repression of oxidative damage by the AtBCB gene and promotion of efflux of Al ions by the NtGDI1 gene. J Exp Bot 56:2661–3271

    Article  CAS  PubMed  Google Scholar 

  • Famoso AN, Zhao K, Clark RT, Tung CW, Wright MH, Bustamante C, Kochian LV, McCouch SR (2011) Genetic architecture of aluminum tolerance in rice (Oryza sativa) determined through genome-wide association analysis and QTL mapping. PLoS Genet 7(8):e1002221

    Article  CAS  PubMed  Google Scholar 

  • Farokhzadeh S, Fakheri BA, Nezhad NM, Tahmasebi S, Mirsoleimani A, Heidari B (2020) Mapping QTLs associated with grain yield and yield-related traits under aluminum stress in bread wheat. Crop Pasture Sci 71:429–444

    Article  CAS  Google Scholar 

  • Foy CD (1996) Tolerance of durum wheat lines to an acid, aluminum-toxic subsoil. J Plant Nutr 19:1381–1394

    Article  CAS  Google Scholar 

  • Foy CD, Chaney RL, White MC (1978) The physiology of metal toxicity in plants. Ann Rev Plant Physiol 29:511–566

    Article  CAS  Google Scholar 

  • François O (2016) Running structure-like population genetic analyses with R. R Tutorials in population genetics, U. Grenoble-Alpes, pp 1–9

  • Frichot E, Francois O (2015) LEA: an R package for landscape and ecological association studies. Methods Ecol Evol 6:925–929

    Article  Google Scholar 

  • Frichot E, Mathieu F, Trouillon T, Bouchard G, Francois O (2014) Fast and efficient estimation of individual ancestry coefficients. Genetics 196:973–983

    Article  PubMed  PubMed Central  Google Scholar 

  • Froese PS, Carter AH (2016) Single nucleotide polymorphisms in the wheat genome associated with tolerance of acidic soils and aluminium toxicity. Crop Sci 56:1662–1677

    Article  CAS  Google Scholar 

  • Garcia-Oliveira AL, Benito C, Guedes-Pinto H, Martins-Lopes P (2018) Molecular cloning of TaMATE2 homoloues potentially related to aluminium tolerance in bread wheat. Plant Biol 20:817–824

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Oliveira AL, Benito C, Prieto P, Menezes RA, Rodrigues-Pousada C, Guedes-Pinto H, Martins-Lopes P (2013) Molecular characterization of TaSTOP1 homoeologues and their response to aluminium and proton (H+) toxicity in bread wheat (Triticum aestivum L.). BMC Plant Biol 13:134

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez L, Quero G, Fernandez S, Brandariz S (2016) lmem.gwaser: Linear mixed effects models for genome-wide association studies. R package version 0.1.0. https://cran.r-project.org/src/contrib/Archive/lmem.gwaser/. Accessed 3 Aug 2020

  • Hamel FC, Breton C, Houde M (1998) Isolation and characterization of wheat Aluminium-regulated genes: possible involvement of Aluminium as a pathogenesis response elicitor. Planta 205:531–538

    Article  CAS  PubMed  Google Scholar 

  • Hassani-Pak K, Singh A, Brandizi M, Hearnshaw J, Amberkar S, Phillips AL, Doonan JH, Rawlings C (2020) KnetMiner: a comprehensive approach for supporting evidence-based gene discovery and complex trait analysis across species. bioRxiv

  • Hede AR, Skovmand B, Lopez Cesati J (2001) Acid soils and aluminum toxicity. In: Reynolds MP, Ortiz-Monasterio I, McNab A (eds) Application of physiology in wheat breeding. Cimmyt, Mexico City, pp 172–182

    Google Scholar 

  • Hoekenga OA, Maron LG, Piñeros MA, Cançado GM, Shaff J, Kobayashi Y, Ryan PR, Dong B, Delhaize E, Sasaki T, Matsumoto H (2006) AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. Proc Nat Acad Sci 103:9738–9743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoekenga OA, Vision TJ, Shaff JE, Monforte AJ, Lee GP, Howell SH, Kochian LV (2003) Identification and characterization of aluminum tolerance loci in Arabidopsis (Landsberg erecta × Columbia) by quantitative trait locus mapping. A physiologically simple but genetically complex trait. Plant Physiol 132:936–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houde M, Diallo AO (2008) Identification of genes and pathways associated with Aluminium stress and tolerance using transcriptome profiling of wheat near-isogenic lines. BMC Genom. 9:400

    Article  CAS  Google Scholar 

  • Hu SW, Bai GH, Carver BF, Zhang DD (2008) Diverse origins of Aluminium-resistance sources in wheat. Theor Appl Genet 118:29–41

    Article  CAS  PubMed  Google Scholar 

  • James RA, Weligama C, Verbyla K, Ryan PR, Rebetzke GJ, Rattey A, Richardson AE, Delhaize E (2016) Rhizosheaths on wheat grown in acid soils: phosphorus acquisition efficiency and genetic control. J Exp Bot 67:3709–3718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jighly A, Alagu M, Makdis F, Singh M, Singh S, Emebiri LC, Ogbonnaya FC (2016) Genomic regions conferring resistance to multiple fungal pathogens in synthetic hexaploid wheat. Mol Breed 36:127

    Article  CAS  Google Scholar 

  • Jombart T, Ahmed I (2011) adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27:3070–3071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Ji L (2005) Adjusting multiple testing in multilocus analyses using the eigenvalues of a correlation matrix. Heredity (Edinb) 95:221–227

    Article  CAS  Google Scholar 

  • Li GD, Conyers MK, Helyar KR, Lisle CJ, Poile GJ, Cullis BR (2019a) Long-term surface application of lime ameliorates subsurface soil acidity in the mixed farming zone of south-eastern Australia. Geoderma 338:236–246

    Article  CAS  Google Scholar 

  • Li G, Hayes R, Condon J, Moroni S, Tavakkoli E, Burns H, Lowrie R, Lowrie A, Poile G, Oates A, Price A and Zander A (2019b). Addressing subsoil acidity in the field with deep liming and organic amendments: Research update for a long-term experiment. In: Proceedings of the 2019 agronomy Australia conference, 25–29 August 2019, Wagga Wagga, Australia

  • Liu M, Yu M, Li G, Carver BF, Yan L (2015) Genetic characterization of aluminum tolerance in winter wheat. Mol Breed 35:205

    Article  CAS  Google Scholar 

  • Lopez-Cesati J, Villareal RL, Mujeeb-Kazi A (1999) Screening of synthetic hexaploids to aluminum toxicity tolerance under laboratory conditions. Annu Wheat Newslett 45:102–103

    Google Scholar 

  • Ma HX, Bai GH, Carver BF, Zhou LL (2005) Molecular mapping of a quantitative trait locus for Aluminium tolerance in wheat cultivar Atlas 66. Theor Appl Genet 112:51–57

    Article  CAS  PubMed  Google Scholar 

  • Maccaferri M, Zhang J, Bulli P, Abate Z, Chao S, Cantu D, Bossolini E, Chen X, Pumphrey M, Dubcovsky J (2015) A genome-wide association study of resistance to stripe rust (Puccinia striiformis f. sp. tritici) in a worldwide collection of hexaploid spring wheat (Triticum aestivum L.). G3: Genes Genom Genet 5:449–465

    Article  Google Scholar 

  • McDonald GK, Taylor JD, Verbyla A, Kuchel H (2012) Assessing the importance of subsoil constraints to yield of wheat and its implications for yield improvement. Crop Pasture Sci 63:1043–1065

    Article  Google Scholar 

  • McKendry AL, Tague DN, Somers DJ (1996) Aluminium tolerance of 1BL.1RS and 1AL.1RS near-isolines in soft red winter wheat. Crop Sci 36:987–990

    Article  Google Scholar 

  • Mujeeb-Kazi A, Kazi AG, Dundas I, Rasheed A, Ogbonnaya F, Kishii M, Bonnett D, Wang RR-C, Xu S, Chen P, Mahmood T, Bux FS (2013) Genetic diversity for wheat improvement as a conduit to food security. Adv Agron 122:179–257

    Article  CAS  Google Scholar 

  • Mujeeb-Kazi A, Rosas V, Roldan S (1996) Conservation of the genetic variation of Triticum tauschii (Coss.) Schmalh. (Aegilops squarrosa auct. non L.) in synthetic hexaploid wheats (T. turgidum L. s.lat. × T. tauschii; 2n = 6× = 42, AABBDD) and its potential utilization for wheat improvement. Genet Res Crop Evol 43:129–134

    Article  Google Scholar 

  • Mulki MA, Jighly A, Ye G, Emebiri LC, Moody D, Ansari O, Ogbonnaya FC (2013) Association mapping for soilborne pathogen resistance in synthetic hexaploid wheat. Mol Breed 31:299–311

    Article  CAS  Google Scholar 

  • Navakode S, Neumann K, Kobiljski B, Lohwasser U, Borner A (2014) Genome wide association mapping to identify aluminium tolerance loci in bread wheat. Euphytica 198:401–411

    Article  CAS  Google Scholar 

  • Navakode S, Weidner A, Lohwasser U, Roder MS, Borner A (2009) Molecular mapping of quantitative trait loci (QTL) controlling aluminium tolerance in bread wheat. Euphytica 166:283–290

    Article  CAS  Google Scholar 

  • Ogbonnaya FC, Abdalla O, Mujeeb-Kazi A, Kazi AG, Xu SS, Gosman N, Lagudah ES, Bonnett D, Sorrells ME, Tsujimoto H (2013) Synthetic Hexaploids: harnessing species of the primary gene pool for wheat improvement. Plant Breed Rev 37:35–122

    Article  Google Scholar 

  • Ogbonnaya FC, Seah S, Lopez-Brana I, Jahier J, Delibes A, Lagudah ES (2001) Molecular-genetic characterisation of a new nematode resistance gene in wheat. Theor Appl Genet 102:623–629

    Article  CAS  Google Scholar 

  • Papernik LA, Bethea AS, Singleton TE, Magalhaes JV, Garvin DF, Kochian LV (2001) Physiological basis of reduced AL tolerance in ditelosomic lines of Chinese Spring wheat. Planta 212:829–834

    Article  CAS  PubMed  Google Scholar 

  • Pellet DM, Papernik LA, Jones DL, Darrah PR, Grunes DL, Kochian LV (1997) Involvement of multiple aluminium exclusion mechanisms in aluminium tolerance in wheat. Plant Soil 192:63–68

    Article  CAS  Google Scholar 

  • Poland JA, Brown PJ, Sorrells ME, Jannink JL (2012) Development of high- density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE 7:e37135

    Article  CAS  Google Scholar 

  • Polle E, Konzak CF, Kittrick JA (1978) Visual detection of aluminium tolerance levels in wheat by hematoxylin staining of seedling roots. Crop Sci 18:823–827

    Article  CAS  Google Scholar 

  • Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    Article  CAS  PubMed  Google Scholar 

  • Raman H, Zhang K, Cakir M, Appels R, Garvin DF, Maron LG, Kochian LV, Moroni JS, Raman R, Imtiaz M, Drake-Brockman F, Waters I, Martin P, Sasaki T, Yamamoto Y, Matsumoto H, Hebb DM, Delhaize E, Ryan PR (2005) Molecular mapping and characterization of ALMT1, the aluminium-tolerance gene of bread wheat (Triticum aestivum L.). Genome 48:781–791

    Article  CAS  PubMed  Google Scholar 

  • Raman H, Ryan PR, Raman R, Stodart BJ, Zhang K, Martin P, Wood R, Sasaki T, Yamamoto Y, Mackay M, Hebb DM, Delhaize E (2008a) Analysis of TaALMT1 traces the transmission of Aluminium resistance in cultivated common wheat (Triticum aestivum L.). Theor Appl Genet 116:343–354

    Article  CAS  PubMed  Google Scholar 

  • Raman H, Hare R, Graham K, Coombes N, Raman R (2008b) Characterisation of durum germplasm for aluminium resistance using nutrient solution culture. In: Appels R, Eastwood R, Lagudah E, Langridge P, Mackay M, McIntyre L, Sharp P (eds) The 11th International Wheat Genetics Symposium proceedings. http://hdl.handle.net/2123/3472

  • Raman H, Stodart B, Ryan PR, Delhaize E, Emebiri L, Raman R, Coombes N, Milgate A (2010) Genome wide association analyses of common wheat (Triticum aestivum L.) germplasm identifies multiple loci for Aluminium resistance. Genome 53:957–966

    Article  CAS  PubMed  Google Scholar 

  • Raman H, Raman R, Kilian A, Detering F, Carling J, Coombes N, Diffey S, Kadkol G, Edwards D, McCully M, Ruperao P (2014) Genome-wide delineation of natural variation for pod shatter resistance in Brassica napus. PLoS ONE 9(7):e101673

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rattey A, Shorter R (2010) Evaluation of CIMMYT conventional and synthetic spring wheat germplasm in rainfed sub-tropical environments I. Grain Yield Field Crops Res 118:273–281

    Article  Google Scholar 

  • Reynolds MP, Borlaug NE (2006) Impacts of breeding on international collaborative wheat improvement. J Agric Sci (Cambridge) 144:3–17

    Article  Google Scholar 

  • Richards KD, Schott EJ, Sharma YK, Davis KR, Gardner RC (1998) Aluminium induces oxidative stress genes in Arabidopsis thaliana. Plant Physiol 116:409–418

    Article  CAS  PubMed  Google Scholar 

  • Rincent R, Moreau L, Monod H, Kuhn E, Melchinger AE, Malvar RA, Moreno-Gonzalez J, Nicolas S, Madur D, Combes V, Dumas F, Altmann T, Brunel D, Ouzunova M, Flament P, Dubreuil P, Charcosset A, Mary-Huard T (2014) Recovering power in association mapping panels with variable levels of linkage disequilibrium. Genetics 197:375–387

    Article  PubMed  PubMed Central  Google Scholar 

  • Ryan P (2018) Assessing the role of genetics for improving the yield of Australia’s major grain crops on acid soils. Crop Pasture Sci 69:242–264

    Article  Google Scholar 

  • Ryan PR, Raman H, Gupta S, Horst WJ, Delhaize E (2009) A second mechanism for Aluminium resistance in wheat relies on the constitutive efflux of citrate from roots. Plant Physiol 149:340–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan PR, Raman H, Gupta S, Sasaki T, Yamamoto Y, Delhaize E (2010) The multiple origins of aluminium resistance in hexaploid wheat include Aegilops tauschii and more recent cis mutations to TaALMT1. The Plant J 64:446–455

    Article  CAS  PubMed  Google Scholar 

  • Saccone SF, Saccone NL, Swan GE, Madden PA, Goate AM, Rice JP, Bierut LJ (2008) Systematic biological prioritization after a genome-wide association study: an application to nicotine dependence. Bioinformatics 24:1805–1811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snowden KC, Gardner RC (1993) Five genes induced by Aluminium in wheat (Triticum aestivum L.) roots. Plant Physiol 103:855–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srimake Y, Miyasaka SC (2016) Evaluation of aluminum sensitivity in Barrel Medic germplasm. J Am Soc Hort Sci 141:249–255

    Article  CAS  Google Scholar 

  • Stekhoven DJ, Bühlmann P (2011) MissForest—nonparametric missing value imputation for mixed-type data. Bioinformatics 28:112–118

    Article  PubMed  CAS  Google Scholar 

  • Tam V, Patel N, Turcotte M, Bossé Y, Paré G, Meyre D (2019) Benefits and limitations of genome-wide association studies. Nat Rev Genet 20:467–484

    Article  CAS  PubMed  Google Scholar 

  • Tang Y, Garvin DF, Kochian LV, Sorrells ME, Carver BF (2002) Physiological genetics of aluminum tolerance in the wheat cultivar Atlas 66. Crop Sci 42:1541–1546

    Article  Google Scholar 

  • Trethowan R, Mujeeb-Kazi A (2008) Novel germplasm resources for improving environmental stress tolerance of hexaploid wheat. Crop Sci 48:1255–1265

    Article  Google Scholar 

  • Von Uexkull HR, Mutert E (1995) Global extent, development and economic impact of acid soils. Plant Soil 171:1–15

    Article  Google Scholar 

  • Villareal RL, Sayre K, Banuelos O, Mujeeb-Kazi A (2001) Registration of four synthetic hexaploid wheat (Triticum turgidum/Aegilops tauschii) germplasm lines tolerant to waterlogging. Crop Sci 41:274–274

    Article  Google Scholar 

  • Xia J, Yamaji N, Kasai T, Ma JF (2010) Plasma membrane-localized transporter for Aluminium in rice. Proc Natl Acad Sci 107:18381–18385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu J, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    Article  CAS  PubMed  Google Scholar 

  • Zhou L-L, Bai G-H, Carver B, Zhang D-D (2007) Identification of new sources of Aluminium resistance in wheat. Plant Soil 297:105–118

    Article  CAS  Google Scholar 

  • Zhou L-L, Bai GH, Ma HX, Carver BF (2007) Quantitative trait loci for Aluminium resistance in wheat. Mol Breed 19:153–161

    Article  CAS  Google Scholar 

  • Ávila CM, Palomino MC, Hornero-Méndez D, Atienza SG (2019) Identification of candidate genes for lutein esterification in common wheat (Triticum aestivum) using physical mapping and genomics tools. Crop Pasture Sci 70:567–574

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers of this paper for their invaluable suggestions to improve the original manuscript. The data used were derived from the Synthetic Evaluation Project funded by grants from the Grains Research and Development Corporation (GRDC). Additional financial support from the NSW Department of Primary Industries, Australia, is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. C. Emebiri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emebiri, L.C., Raman, H. & Ogbonnaya, F.C. Synthetic hexaploid wheat as a source of novel genetic loci for aluminium tolerance. Euphytica 216, 135 (2020). https://doi.org/10.1007/s10681-020-02669-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-020-02669-9

Keywords

Navigation