Skip to main content
Log in

Large scale phenotyping and molecular analysis in a germplasm collection of rocket salad (Eruca vesicaria) reveal a differentiation of the gene pool by geographical origin

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Cultivated rocket (Eruca vesicaria) is a leafy vegetable highly appreciated for its health-promoting virtues and consumed both raw and cooked as ready-to-use vegetable. Despite Eruca being cultivated worldwide, only a few cultivars are available and limited breeding activities have been carried out so far. Therefore, the genetic resources available represent an unexploited potential source of variation for breeding. In the present study, 155 E. vesicaria accessions from 30 countries across Europe, Asia, Africa, and America have been characterized for 54 qualitative and quantitative morphological and quality traits. Conventional descriptors and automated tools for the determination of the quality, morphology, and colour of leaves have been used. Genetic diversity was assessed using 15 inter simple sequence repeat and simple sequence repeat markers. A high level of diversity was evidenced in the collection. Significant differences were found in most of the traits with the exception of five pseudo-qualitative descriptors. The first and second dimensions of the principal components analysis with phenotypic traits accounted for 25.69% of total variation showing a stratification of the genotypes according to the European and Asian origins. In total, 75% of the variation was contained in the first 15 components having eigenvalues higher than 1.0. Also, the population structure divided the collection into two main clusters separating European genotypes from the rest. Furthermore, hierarchical cluster analysis confirmed a geographical separation, grouping the accessions into three major clusters, which were differentiated by plant architecture, leaf and flower colour, leaf water status, leaf blade shape and hairiness of the leaves and stem. Our approach has broadened the knowledge of the diversity within the Eruca gene pool, thus contributing to identify sources of variation and to select the best candidates for cultivated rocket breeding programs, as well as to determine the genetic basis of plant and leaf traits in future genome-wide association studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andrey P, Maurin Y (2005) Free-D: an integrated environment for three-dimensional reconstruction from serial sections. J Neurosci Methods 145:233–244

    Article  PubMed  Google Scholar 

  • Awada L, Phillips PWB, Smyth SJ (2018) The adoption of automated phenotyping by plant breeders. Euphytica 214:148. https://doi.org/10.1007/s10681-018-2226-z

    Article  Google Scholar 

  • Barrs HD, Weatherley PE (1962) A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust J Biol Sci 15(3):413–428

    Article  Google Scholar 

  • Bell L, Wagstaff C (2014) Glucosinolates, myrosinase hydrolysis products, and flavonols found in rocket (Eruca sativa and Diplotaxis tenuifolia). J Agric Food Chem 62:4481–4492

    Article  CAS  PubMed  Google Scholar 

  • Bell L, Oruna Concha MJ, Wagstaff C (2015) Identification and quantification of glucosinolate and flavonol compounds in rocket salad (Eruca sativa, Eruca vesicaria and Diplotaxis tenuifolia) by LC-MS: highlighting the potential for improving nutritional value of rocket crops. Food Chem 172:852–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell L, Methven L, Wagstaff C (2017) The influence of phytochemical composition and resulting sensory attributes on preference for salad rocket (Eruca sativa) accessions by consumers of varying TAS2R38 diplotype. Food Chem 222:6–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett RN, Mellon FA, Botting NP, Eagles J, Rosa EAS, Williamson G (2002) Identification of the major glucosinolate (4-mercaptobutyl glucosinolate) in leaves of Eruca sativa L. (salad rocket). Phytochemistry 61:25–30

    Article  CAS  PubMed  Google Scholar 

  • Bozokalfa MK, Eşiyok D, Ilbi H, Kaygisiz AT (2010) Estimates of genetic variability and association studies in quantitative plant traits of Eruca spp. landraces. Genetika 42(3):501–512

    Article  Google Scholar 

  • Bozokalfa MK, Eşiyok D, Ilbi H, Kavak S, Kaygisiz AT (2011) Evaluation of phenotypic diversity and geographical variation of cultivated (Eruca sativa L.) and wild (Diplotaxis tenuifolia L.) rocket plant. Plant Genet Resour C 9:454–563

    Article  CAS  Google Scholar 

  • CBI Centre for the Promotion of Imports from developing countries (2019) https://www.cbi.eu/market-information/fresh-fruit-vegetables/fresh-herbs/europe/. Accessed 21 Sept 2019

  • Cheruiyot EK, Mumera LM, Ngetich WK, Hassanali A, Wachira F (2007) Polyhenols as potential indicators for osmotic tolerance in tea (Camellia sinensis L.). Biosci Biotechnol Biochem 71:2190–2197. https://doi.org/10.1271/bbb.70156

    Article  CAS  PubMed  Google Scholar 

  • Curtin F, Schulz P (1998) Multiple correlations and Bonferroni’s correction. Biol Psychiatr 44:775–777

    Article  CAS  Google Scholar 

  • D’Antuono LF, Elementi S, Neri R (2008) Glucosinolates in Diplotaxis and Eruca leaves: diversity, taxonomic relations and applied aspects. Phytochemistry 69:187–199

    Article  PubMed  Google Scholar 

  • Daayf F, El Hadrami A, El-Bebany AE, Henriquez MA, Yao Z, Derksen H, El-Hadrami I, Adam LR (2012) Phenolic compounds in plant defense and pathogen counter-defense mechanisms. Rec Adv Polyphen Res 3:191–208

    Article  CAS  Google Scholar 

  • Dalin P, Agren J, Björkman C, Huttumen P, Kärkkäinen K (2008) Leaf trichome formation and plant resistance to herbivory. In: Schaller A (ed) Induced plant resistance to herbivory. Springer, Berlin, pp 89–105

    Chapter  Google Scholar 

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Egea-Gilabert C, Fernandez JA, Migliaro D, Martinez Sanchez JJ, Vicente MJ (2009) Genetic variability in wild vs. cultivated Eruca vesicaria populations as assessed by morphological, agronomical and molecular analyses. Sci Hortic 121:260–266

    Article  CAS  Google Scholar 

  • Fine PVA (2015) Ecological and evolutionary drivers of geographic variation in species diversity. Annu Rev Ecol Evol Syst 46:369–392. https://doi.org/10.1146/annurev-ecolsys-112414-054102

    Article  Google Scholar 

  • Gilardi G, Chen G, Garibaldi A, Zhiping C, Gullino ML (2007) Resistance of different rocket cultivars to wilt caused by strains of Fusarium oxysporum under artificial inoculation conditions. J Plant Pathol 89:113–117

    Google Scholar 

  • Gómez-Campo C (2003) Morphological characterization of Eruca vesicaria (Cruciferae) germplasm. Bocconea 16:615–624

    Google Scholar 

  • Guijarro-Real C, Prohens J, Rodriguez-Burruezo A, Adalid-Martínez AM, López-Gresa MP, Fita A (2019) Wild edible fool’s watercress: a potential crop with high nutraceutical properties. PeerJ 7:e6296

    Article  PubMed  PubMed Central  Google Scholar 

  • Hall MKD, Jobling JJ, Rogers GS (2012) Some perspectives on rocket as a vegetable crop: a review. Veg Crop Res Bull 76:21–41

    Google Scholar 

  • Hanldey R, Ekbom B, Ågren J (2005) Variation in trichome density and resistance against a specialist insect herbivore in natural populations of Arabidopsis thaliana. Ecol Entomol 30:284–292

    Article  Google Scholar 

  • Hauser MT (2014) Molecular basis of natural variation and environmental control of trichome patterning. Front Plant Sci 5:320

    Article  PubMed  PubMed Central  Google Scholar 

  • Higdon JV, Delage B, Williams DE, Dashwood RH (2007) Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacol Res 55:224–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • IPGRI (1999) Descriptors for rocket (Eruca spp.). International Plant Genetic Resources Institute, Rome

    Google Scholar 

  • Lenzi A, Tesi R (2000) Effect of some cultural factors on nitrate accumulation in rocket [Diplotaxis tenuifolia (L.) D.C. – Eruca sativa Mill.]. Riv Agronomia 34(4):419–424

    Google Scholar 

  • Mantel NA (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • Meyer RS, Purugganan MD (2013) Evolution of crop species: genetics of domestication and diversification. Nat Rev Genet 14:840–852

    Article  CAS  PubMed  Google Scholar 

  • Ninfali P, Mea G, Giorgini S, Rocchi M, Bacchiocca M (2005) Antioxidant capacity of vegetables spices and dressings relevant to nutrition. Br J Nutr 93:257–266

    Article  CAS  PubMed  Google Scholar 

  • Padulosi S, Pignone D (1996) Rocket: a mediterranean crop for the world. Report of a workshop. IPGRI International Plant Genetic Resources Institute, Bioversity International, Rome, p 101

  • Pane C, Sigillo L, Caputo M, Serratore G, Zaccardelli M, Tripodi P (2017) Response of rocket salad germplasm (Eruca and Diplotaxis spp.) to major pathogens causing damping-off, wilting and leaf spot diseases. Arch Phytopathol Plant Protect 50:167–177

    Article  CAS  Google Scholar 

  • Pariyar S, Eichert T, Goldbach HE, Hunsche M, Burkhardt J (2013) The exclusion of ambient aerosols changes the water relations of sunflower (Helianthus annuus) and bean (Vicia vaba) plants. Environ Exp Bot 88:43–52

    Article  CAS  Google Scholar 

  • Pasini F, Verardo V, Caboni MF, D’Antuono LF (2012) Determination of glucosinolates and phenolic compounds in rocket salad by HPLC-DAD−MS: evaluation of Eruca sativa Mill. and Diplotaxis tenuifolia L. genetic resources. Food Chem 133:1025–1033

    Article  CAS  Google Scholar 

  • Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A (1996) The utility of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:225–238

    Article  CAS  Google Scholar 

  • Prevost A, Wilkinson MJ (1999) A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theor Appl Genet 98:107–112

    Article  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singleton VL, Rossi JA Jr (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Viticult 16:144–158

    CAS  Google Scholar 

  • Taiz L, Zeiger E (2006) Plant physiology, 4th edn. Sinauer Associates Inc., Sunderland

    Google Scholar 

  • Tanentzap FM, Stempel A, Ryser P (2015) Reliability of leaf relative water content (RWC) measurements after storage: consequences for in situ measurements. Botany 93:535–541

    Article  Google Scholar 

  • Taranto F, Francese G, Di Dato F, D’Alessandro A, Greco B, Onofaro Sanajà V, Pentangelo A, Mennella G, Tripodi P (2016) Leaf metabolic, genetic, and morphophysiological profiles of cultivated and wild rocket salad (Eruca and Diplotaxis spp.). J Agric Food Chem 64:5824–5836

    Article  CAS  PubMed  Google Scholar 

  • Thakur AK, Singh KH, Singh L, Nanjundan J, Khan YJ, Singh D (2018) SSR marker variations in Brassica species provide insight into the origin and evolution of Brassica amphidiploids. Hereditas 155:6. https://doi.org/10.1186/s41065-017-0041-5

    Article  PubMed  Google Scholar 

  • The Plant List (2019). http://www.theplantlist.org/tpl1.1/search?q=Eruca. Accessed 21 Sept 2019

  • Tripodi P, Francese G, Mennella G (2017) Rocket salad: crop description, bioactive compounds and breeding perspectives. Adv Hortic Sci. https://doi.org/10.13128/ahs-21087

    Article  Google Scholar 

  • Vavilov NI (1926) Centers of origin of cultivated plants. Bull Appl Bot Genet Plant Breed 16:1–248

    Google Scholar 

  • Wagner GJ (1991) Secreting glandular trichomes: more than just hairs. Plant Physiol 96:675–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warwick SI, Gukel RK, Gomez-Campo C, James T (2007) Genetic variation in Eruca vesicaria (L.) Cav. Plant Genet Resour C 5:142–153

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by ‘RGV-FAO’ project funded by the Italian Ministry of Agriculture, Food and Forestry. C. Guijarro-Real thanks the Ministerio de Educación, Cultura y Deporte of Spain (MECD) for its financial support by means of a predoctoral FPU Grant (FPU14/06798), and for the specific grant for mobility (EST17/00354) from the same Organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pasquale Tripodi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 41 kb)

Supplementary material 2 (PPTX 843 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guijarro-Real, C., Navarro, A., Esposito, S. et al. Large scale phenotyping and molecular analysis in a germplasm collection of rocket salad (Eruca vesicaria) reveal a differentiation of the gene pool by geographical origin. Euphytica 216, 53 (2020). https://doi.org/10.1007/s10681-020-02586-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-020-02586-x

Keywords

Navigation