Skip to main content
Log in

Assessment of grapevine germoplasm collection for resistance to grape leaf rust (Phakopsora euvitis) using a leaf disc assay

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

The present study aimed to assess 25 grapevine genotypes, representing different Vitis species, for resistance to grapevine leaf rust (GLR), caused by Phakopsora euvitis, using leaf disc assay. Disinfected leaf discs of 12 mm in diameter were placed in agar-water medium. On the abaxial side, a 30-µl drop at a concentration of 30,000 urediniospores/ml was deposited and incubated in a growth chamber under controlled conditions. The genotypes were assessed by the components of resistance latent period, number of pustule per cm2, diameter of pustules (DP; mm), number of urediniospores per disc, severity (%), and area under the disease severity progress curve. The ANOVA revealed a significant difference (p < 0.05) among genotypes for all components of resistance tested. Significant correlation was observed for all components of resistance evaluated. Based on disease severity, the genotypes were classified into four resistance categories: (1) resistant, (2) partially resistant, (3) susceptible, and (4) highly susceptible. None of the genotypes were asymptomatic and 32% were considered resistant or partially resistant. ‘IAC766’ and ‘Seibel 405’ were the most resistant, showing the lowest severity of 0.03 and 1.48%, respectively. ‘Seibel 128’, V. del rioi Sd1, V. slavinii and V. candicans were partially resistant. From the resistant and partially resistant genotypes, only V. candicans has trichomes on the abaxial leaf surface. Particularly, the resistant genotypes are resistance sources to GLR to be explored in future breeding programs and for genetic analysis to localize resistant genes to P. euvitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Angelotti F, Scapin CR, Tessmann DJ, Vida JB, Vieira RA, Souto ER (2008) Genetic resistance of grape genotypes to rust. Pesq Agrop Bras 43:1129–1134

    Google Scholar 

  • Angelotti F, Tessmann DJ, Scapin CR, Vida JB (2011) Effect of temperature and light on germination of uredinispores of Phakopsora euvitis. Summa Phytopathol 37:59–61

    Google Scholar 

  • Angelotti F, Regina C, Buffara S, Vieira RA, Vida JB (2014) Protective, curative and eradicative activities of fungicides against grapevine rust. Ciência Rural 44:1367–1370

    CAS  Google Scholar 

  • Azimi MH, Jozghasemi S, Barba-Gonzalez R (2018) Multivariate analysis of morphological characteristics in Iris germanica hybrids. Euphytica 214:161

    Google Scholar 

  • Bellin D, Peressotti E, Merdinoglu D, Wiedemann-Merdinoglu S, Adam-Blondon AF, Cipriani G, Morgante M, Testolin R, Di Gaspero G (2009) Resistance to Plasmopara viticola in grapevine ‘Bianca’ is controlled by a major dominant gene causing localised necrosis at the infection site. Theor Appl Genet 120:163–176

    PubMed  Google Scholar 

  • Boso S, Alonso-Villaverde V, Gago P, Santiago JL, Martínez MC (2014) Susceptibility to downy mildew (Plasmopara viticola) of different Vitis varieties. Crop Protection 6:26–35

    Google Scholar 

  • Brown MV, Moore JN, Fenn P, McNew RW (1999) Comparison of leaf disk, greenhouse, and field screening procedures for evaluation of grape seedlings for downy mildew resistance. HortScience 34:331–332

    Google Scholar 

  • Buerstmayr M, Matiasch L, Mascher F, Vida G, Ittu M, Robert O, Holdgate S, Flath K, Neumayer A, Buerstmayr H (2014) Mapping of quantitative adult plant field resistance to leaf rust and stripe rust in two European winter wheat populations reveals co-location of three QTL conferring resistance to both rust pathogens. Theor Appl Genet 127:2011–2028

    PubMed  PubMed Central  Google Scholar 

  • Buonassisi D, Colombo M, Migliaro D, Dolzani C, Peressotti E, Mizzotti C, Velasco R, Masiero S, Perazzolli M, Vezzulli S (2017) Breeding for grapevine downy mildew resistance: a review of “omics” approaches. Euphytica 213:103–124

    Google Scholar 

  • Calonnec A, Wiedemann-Merdinoglu S, Delière L, Cartolaro P, Schneider C, Delmotte F (2013) The reliability of leaf bioassays for predicting disease resistance on fruit: a case study on grapevine resistance to downy and powdery mildew. Plant Pathol 62:533–544

    Google Scholar 

  • Calonnec A, Jolivet J, Vivin P, Schnee S (2018) Pathogenicity traits correlate with the susceptible Vitis vinifera leaf physiology transition in the biotroph fungus Erysiphe necator: an adaptation to plant ontogenic resistance. Frontiers Plant Science 9:1–17

    Google Scholar 

  • Campbell CL, Madden LV (1990) Introduction to Plant Disease Epidemiology”. Wiley, New York

    Google Scholar 

  • Deglène-Benbrahim L, Wiedemann-Merdinoglu S, Merdinoglu D, Walter B (2010) Evaluation of downy mildew resistance in grapevine by leaf disc bioassay with in vitro- and greenhouse-grown plants. Am J Enol Vitic 61:521–528

    Google Scholar 

  • do Vale FXR, Parlevliet JE, Zambolim L (2001) Concepts in plant disease resistance. Fitopatologia Brasileira 26:577–589

    Google Scholar 

  • Eibach R, Zyprian E, Welter LJ, Töpfer R (2007) The use of molecular markers for pyramiding resistance genes in grapevine breeding. Vitis 46:120–124

    CAS  Google Scholar 

  • Ferreira DF (2011) Sisvar: a computer statistical analysis system. Ciênc Agrotec 35:1039–1042

    Google Scholar 

  • Gómez-Zeledón J, Kaiser M, Spring O (2016) An extended leaf disc test for virulence assessment in Plasmopara viticola and detection of downy mildew resistance in vitis. J Plant Pathol Microbiol 7:1–6

    Google Scholar 

  • Hammer Ø, Harper DTA, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4:1–9

    Google Scholar 

  • Hennessy CR, Daly AM, Hearnden MN (2007) Assessment of grapevine cultivars for resistance to Phakopsora euvitis. Australas Plant Pathol 36:313–317

    Google Scholar 

  • Herzog S, Jaiswal SN, Urban E, Riemer A, Fischer S, Heidmann SK (2013) Functional dissection of the Drosophila melanogaster condensin subunit Cap-G reveals its exclusive association with Condensin I. PLoS Genet 9:1–17

    Google Scholar 

  • Hodson DP (2011) Shifting boundaries: challenges for rust monitoring. Euphytica 179:93–104

    Google Scholar 

  • IPGRI, UPOV, OIV (1997) Descriptors for grapevine (Vitis spp.). International Union for the Protection of New Varieties of Plants (UPOV), Geneva, Switzerland/Office International de la Vigne et du Vin (OIV), Paris, France/International Plant Genetic Resources Institute (IPGRI), Rome, Italy

  • Jürges G, Kassemeyer HH, Dürrenberger M, Düggelin M, Nick P (2009) The mode of interaction between Vitis and Plasmopara viticola Berk. & Curt. Ex de Bary depends on the host species. Plant Biology 11:886–898

    PubMed  Google Scholar 

  • Kortekamp A, Zyprian E (1999) Leaf hairs as a basic protective barrier against downy mildew of grape. J Phytopathol 147:453–459

    Google Scholar 

  • Li L, Zhang Q, Huang DA (2014) Review of imaging techniques for plant phenotyping. Sensors 14:20078–20111

    PubMed  Google Scholar 

  • Li X, Wu J, Yin L, Zhang Y, Qu J, Lu J (2015) Comparative transcriptome analysis reveals defense-related genes and pathways against downy mildew in Vitis amurensis grapevine. Plant Physiol Biochem 95:1–14

    PubMed  Google Scholar 

  • Marguerit E, Boury C, Manicki A, Donnart M, Butterlin G, Némorin A, Wiedemann-Merdinoglu S, Merdinoglu D, Ollat N, Decroocq S (2009) Genetic dissection of sex determinism, inflorescence morphology and downy mildew resistance in grapevine. Theor Appl Genet 118:1261–1278

    PubMed  Google Scholar 

  • Matsunaga TM, Ogawa D, Taguchi-Shiobara F, Ishimoto M, Matsunaga S, Habu Y (2017) Direct quantitative evaluation of disease symptoms on living plant leaves growing under natural light. Breed Sci 67:316–319

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maul et al. (2019) Vitis International Variety Catalogue. www.vivc.de. Accessed on Sept 2019

  • Mendgen K, Hahn M (2002) Plant infection and the establishment of fungal biotrophy. Trends Plant Sci 7:352–356

    CAS  PubMed  Google Scholar 

  • Merdinoglu D, Wiedemn-Merdinoglu S, Coste P, Dumas V, Haetty S, Butterlin G, Greif C (2003) Genetic analysis of downy mildew resistance derived from Muscadinia rotundifolia. Acta Hort 603:451–456

    CAS  Google Scholar 

  • Montaigne E, Coelho A, Khefif L (2016) Economic issues and perspectives on innovation in new resistant grapevine varieties in France. Wine Econ Policy 5:73–77

    Google Scholar 

  • Moreira FM, Madini A, Marino R, Zulini L, Stefanini M, Velasco R, Kozma P, Grando MS (2010) Genetic linkage maps of two interspecific grape crosses (Vitis spp.) used to localize quantitative trait loci for downy mildew resistance. Tree Genet Genomes 7:153–167

    Google Scholar 

  • Mutka AM, Bart Rebecca S (2015) Image-based phenotyping of plant disease symptoms. Front Plant Sci 5:479–482

    Google Scholar 

  • Myles S, Boyko AR, Owens CL, Brown PJ, Grassi F, Aradhya MK, Prins B, Reynolds A, Chia J, Ware D, Bustamante CD, Buckler ES (2011) Genetic structure and domestication history of the grape. Proc Natl Acad Sci 108:3530–3535

    CAS  PubMed  Google Scholar 

  • Naruzawa ES, Celoto IBM, Papa MFS, Tomquelski GV, Boliani AC (2006) Estudos epidemiológicos e controle químico de Phakopsora euvitis. Fitopatol Brasileira 31:41–45

    Google Scholar 

  • Nogueira Júnior AF, Ribeiro RV, Appezzato-da-Glória B, Soares MKM, Rasera JB, Amorim L (2017) Phakopsora euvitis causes unusual damage to leaves and modifies carbohydrate metabolism in grapevine. Front Sci 8:1–12

    Google Scholar 

  • Oliveira PRD, Scotton DC, Nishimura DS, Figueira A (2005) Análise da diversidade genética por AFLP e identificação de marcadores associados à resistência a doenças em videira. Revista Brasileira de Fruticultura Jaboticabal 27:454–457

    Google Scholar 

  • Ono Y (2000) Taxonomy of the Phakopsora ampelopsidis species complex on vitaceous hosts in Asia including a new species, P. euvitis. Mycologia 92:154–173

    Google Scholar 

  • Parlevliet JE (1979) Compnents of resistance that reduce the rate of epidemic development. Annu Rev Phytopathol 17:203–222

    Google Scholar 

  • Parlevliet JE, Van Ommeren A (1975) Partial resistance of barley to leaf rust, Puccinia hordei. II. Relationship between field trials, micro plot tests and latent period. Euphytica 24:293–303

    Google Scholar 

  • Patil SG, Honrao BK, Karkamkar SP (1998) Reaction of some grape germplasm against the rust disease. J Maharashtra Agric Univ 23:138–140

    Google Scholar 

  • Primiano IV, Loehrer M, Amorim L, Schaffrath U (2017) Asian grapevine leaf rust caused by Phakopsora euvitis: an important disease in Brazil. Plant Pathol 66:691–701

    Google Scholar 

  • Saifert L, Sánchez-Mora FD, Assumpção WT, Zanghelini JA, Giacometti R, Novak EI, Dal Vesco LL, Nodari RO, Eibach R, Welter LJ (2018) Marker-assisted pyramiding of resistance loci to grape downy mildew. Pesquisa Agropecuária Brasileira 53:602–610

    Google Scholar 

  • Sánchez-Mora FD, Saifert L, Zanghelini JA, Assumpção WT, Guginski P, Giacometti RG, Novak EI, Klabunde GH, Eibach R, Dal Vesco LL, Nodari RO, Welter LJ (2017) Behavior of grape breeding lines with distinct resistance alleles to downy mildew (Plasmopara viticola). Crop Breed Appl Biotechnol 17:141–149

    Google Scholar 

  • Scapin-Buffara CR, Angelotti F, Dufault NS, Pereira CB, Dauri J, Tessmann DJ (2018) Seasonal progression of leaf rust in ‘Niagara Rosada’ grapevine in a biannual crop system in Brazil. Eur J Plant Pathol 152:589–597

    Google Scholar 

  • Schwander F, Eibach R, Fechter I, Hausmann L, Zyprian E, Töpfer R (2012) Rpv10: a new locus from the Asian Vitis gene pool for pyramiding downy mildew resistance loci in grapevine. Theor Appl Genet 124:163–176

    CAS  PubMed  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry the principles and practice of statistics in biological research, 3rd edn. W.H. Freeman and Co., New York

    Google Scholar 

  • SPHD (2015) National diagnostic protocol for Phakopsora euvitis, the cause of grapevine leaf rust. Subcommittee on Plant Health Diagnostics, Australia

    Google Scholar 

  • Staples RC (2000) Research on the rust fungi during the twentieth century. Ann Rev Phytopathol 38:49–69

    CAS  Google Scholar 

  • Staudt G, Kassemeyer H (1995) Evaluation of downy mildew resistance in various accessions of wild Vitis species. Vitis J Grapevine 34:225–228

    Google Scholar 

  • Tessmann DJ, Vida JB, Lopes DB (2003) Uva: novo problema. Cultivar HF 4:22–25

    Google Scholar 

  • Tessmann DJ, Dianese JC, Genta W, Vida JB, Mio LLM (2004) Grape rust caused by Phakopsora euvitis, a new disease for Brazil. Fitopatol Bras 29:338

    Google Scholar 

  • Töpfer R, Hausmann L, Harst M, Maul E, Zyprian E, Eibach R (2011) New horizons for grapevine breeding. Fruit Veg Cereal Sci Biotechnol 5:79–100

    Google Scholar 

  • Tyson JL, Afullerton R (2015) A leaf disc assay for determining resistance of taro to Phytophthora colocasiae. N Z Plant Prot 68:415–419

    CAS  Google Scholar 

  • Veikondis R, Burger P, Vermeulen A, Van Heerden CJ, Prins R (2018) Confirmation of the effectiveness and genetic positions of disease resistance loci in ‘Kishmish vatkana’ (Ren1) and ‘Villard blanc’ (Ren3 and Rpv3). South Afr J Enol Vitic 39:185–195

    Google Scholar 

  • Venuti S, Copetti D, Foria S, Falginella L, Hoffmann S, Bellin D, Cindric P, Kozma P, Scalabrin S, Morgante M, Testolin R, Di Gaspero G (2013) Historical introgression of the downy mildew resistance gene Rpv12 from the Asian species Vitis amurensis into grapevine varieties. Plos One 8:e61228

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weinet MP, Shivas RG, Pitkethley RN, Daly AM (2003) First record of grapevine leaf rust in the Northern Territory, Australia. Australas Plant Pathol 32:117–118

    Google Scholar 

  • Welter LJ, Göktürk-Baydar N, Akkurt M, Maul E, Eibach R, Töpfer R, Zyprian EM (2007) Genetic mapping and localization of quantitative trait loci affecting fungal disease resistance and leaf morphology in grapevine (Vitis vinifera L). Mol Breed 20:359–374

    CAS  Google Scholar 

  • Wiedemann-Merdinoglu S, Prado E, Coste P, Dumas V, Butterlin G, Bouquet A, Merdinoglu D (2006) Genetic analysis of resistance to downy mildew from Muscadinia rotundifolia. In: International conference on grape genetics and breeding. ISHS, Udine

  • Zanghelini JA, Bogo A, dal Vesco LL, Gomes BR, Mecabô CV, Herpich CH, Welter LJ (2019) Response of PIWI grapevine cultivars to downy mildew in highland region of southern Brazil. Eur J Plant Pathol 154:1–8

    Google Scholar 

  • Zyprian E, Ochßner I, Schwander F, Šimon S, Hausmann L, Bonow-Rex M, Moreno-Sanz P, Stella Grando M, Wiedemann-Merdinoglu S, Merdinoglu D, Eibach R, Töpfer R (2016) Quantitative trait loci affecting pathogen resistance and ripening of grapevines. Mol Genet Genom 291:1573–1594

    CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by Embrapa-SEG through the project “Adding value to grape genetic resources aiming to meet demands resulting from the expansion of Brazilian viticulture and from the modernization of consumer (Grant No.: 02.13.03.002.00.00)”. We are also thankful to FAPESC (Santa Catarina State Foundation for Scientific and Technological Development) and Foundation for the Coordination and Improvement of Higher Level or Education Personnel (Capes) for fellowship to BRG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leocir José Welter.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomes, B.R., Bogo, A., Copatti, A. et al. Assessment of grapevine germoplasm collection for resistance to grape leaf rust (Phakopsora euvitis) using a leaf disc assay. Euphytica 215, 194 (2019). https://doi.org/10.1007/s10681-019-2514-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-019-2514-2

Keywords

Navigation