Skip to main content
Log in

Global identification and expression analysis of pineapple aquaporins revealed their roles in CAM photosynthesis, boron uptake and fruit domestication

  • Original Article
  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Pineapple is a crassulacean acid metabolism (CAM) plant with high economic value. Originated at semi-arid regions where water is limited, CAM plant is known for its high water use efficiency (WUE). Aquaporin regulates whole plant level water usage and transportation, which are critical for many physiological processes, including photosynthesis. Systematically identification and analyses of the aquaporin family resulted in detailed annotation of this gene family in pineapple. Among the 36 aquaporins identified in pineapple genome, 10 members were found in the TIP subfamily, 10 members were found in the PIP subfamily, 11 members were found in the NIP subfamily, and 3 members were found in the SIP subfamily. Additionally, there was also one TIP1-like aquaporin and one NIP1-like aquaporin that shared sequence similarity to TIP1 and NIP1 aquaporins respectively. Using transcriptome data from leaf tissues sampled every 2 hs in 24 h, we discovered aquaporin genes with circadian expression patterns in the domesticated pineapple and revealed the potential functions of all aquaporin genes for pineapple and CAM plants in general. To understand the domestication history of aquaporin, we compared the aquaporins from wild pineapple and cultivars, and found that the aquaporin expression profile in domesticated pineapple fruit development is very different from the wild pineapple, implicating the importance of aquaporin genes in the process of domesticated fruit development, such as rapid fruit expansion and ripening. This research has also targeted aquaporin subfamily nodulin26-like intrinsic protein5-1 (NIP5-1) gene in pineapple, which plays an important role in boron transportation, and had not yet been revealed in any monocot species. CAM plant has unique circadian regulation mechanisms for aquaporin genes in comparison with C3 plants, which might be critical for its effective plant water utilization. Our result provided new insights into evolution and functional diversification of the CAM aquaporin family, and yielded genomic resources for improving WUE and boron transportation in C3 and cereal crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

The pineapple tissue RNA-seq data analyzed during the current study have been deposited at the CyVerse CoGe database and can be downloaded from https://de.cyverse.org/de/?type=data&folder=/iplant/home/cmwai/coge_data/Pineapple_tissue_RNAseq.

Abbreviations

CAM:

Crassulacean acid metabolism

WUE:

Water use efficiency

NIP:

Nodulin26-like intrinsic protein

PIP:

Plasma membrane intrinsic protein

SIP:

Small basic intrinsic protein

TIP:

Tonoplast intrinsic protein

MDS:

Multidimensional scaling plot

References

  • Alleva K, Marquez M, Villarreal N, Mut P, Bustamante C, Bellati J, Martinez G, Civello M, Amodeo G (2010) Cloning, functional characterization, and co-expression studies of a novel aquaporin (FaPIP2;1) of strawberry fruit. J Exp Bot 61(14):3935–3945. https://doi.org/10.1093/jxb/erq210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bezerra-Neto JP, de Araujo FC, Ferreira-Neto JRC, da Silva MD, Pandolfi V, Aburjaile FF, Sakamoto T, Silva RLD, Kido EA, Amorim LLB, Ortega JM, Benko-Iseppon AM (2019) Plant aquaporins: diversity, evolution and biotechnological applications. Curr Protein Pept Sc 20(4):368–395. https://doi.org/10.2174/1389203720666181102095910

    Article  CAS  Google Scholar 

  • Bijanzadeh E, Emam Y (2010) Effect of defoliation and drought stress on yield components and chlorophyll content of wheat. Pak J Biol Sci 13(14):699–705

    Article  CAS  Google Scholar 

  • Cai J, Liu X, Vanneste K, Proost S, Tsai WC, Liu KW, Chen LJ, He Y, Xu Q, Bian C, Zheng ZJ, Sun FM, Liu WQ, Hsiao YY, Pan ZJ, Hsu CC, Yang YP, Hsu YC, Chuang YC, Dievart A, Dufayard JF, Xu X, Wang JY, Wang J, Xiao XJ, Zhao XM, Du R, Zhang GQ, Wang MN, Su YY, Xie GC, Liu GH, Li LQ, Huang LQ, Luo YB, Chen HH, de Peer YV, Liu ZJ (2015) The genome sequence of the orchid Phalaenopsis equestris. Nat Genet 47(1):65. https://doi.org/10.1038/ng.3149

    Article  CAS  PubMed  Google Scholar 

  • Chandra Babu R, Zhang J, Blum A, David Ho TH, Wu R, Nguyen HT (2004) HVA1, a LEA gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa L.) via cell membrane protection. Plant Sci 166(4):855–862. https://doi.org/10.1016/j.plantsci.2003.11.023

    Article  CAS  Google Scholar 

  • Chatterjee M, Tabi Z, Galli M, Malcomber S, Buck A, Muszynski M, Gallavotti A (2014) The boron efflux transporter ROTTEN EAR is required for maize inflorescence development and fertility. Plant Cell 26(7):2962–2977. https://doi.org/10.1105/tpc.114.125963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Claassen MM, Shaw RH (1970) Water deficit effects on corn.2. Grain components. Agron J 62(5):652

    Article  Google Scholar 

  • Clement CR, De Cristo-Araújo M, Coppens D’Eeckenbrugge G, Alves Pereira A, Picanço-Rodrigues D (2010) Origin and domestication of native Amazonian crops. Diversity 2(1):72–106

    Article  Google Scholar 

  • DePaoli HC, Borland AM, Tuskan GA, Cushman JC, Yang X (2014) Synthetic biology as it relates to CAM photosynthesis: challenges and opportunities. J Exp Bot 65(13):3381–3393. https://doi.org/10.1093/jxb/eru038

    Article  CAS  PubMed  Google Scholar 

  • Doebley JF, Gaut BS, Smith BD (2006) The molecular genetics of crop domestication. Cell 127(7):1309–1321. https://doi.org/10.1016/j.cell.2006.12.006

    Article  CAS  PubMed  Google Scholar 

  • Edwards EJ, Ogburn RM (2012) Angiosperm responses to a low-Co2 world: CAM and C4 photosynthesis as parallel evolutionary trajectories. Int J Plant Sci 173(6):724–733. https://doi.org/10.1086/666098

    Article  CAS  Google Scholar 

  • Food and Agriculture Organization of the United Nations (2019) FAOSTAT statistical database. FAO, Rome

    Google Scholar 

  • Fouquet R, Leon C, Ollat N, Barrieu F (2008) Identification of grapevine aquaporins and expression analysis in developing berries. Plant Cell Rep 27(9):1541–1550. https://doi.org/10.1007/s00299-008-0566-1

    Article  CAS  PubMed  Google Scholar 

  • Fuller DQ (2007) Contrasting patterns in crop domestication and domestication rates: Recent archaeobotanical insights from the old world. Ann Bot 100(5):903–924. https://doi.org/10.1093/aob/mcm048

    Article  PubMed  PubMed Central  Google Scholar 

  • Gambetta GA, Fei J, Rost TL, Knipfer T, Matthews MA, Shackel KA, Walker MA, McElrone AJ (2013) Water uptake along the length of grapevine fine roots: developmental anatomy, tissue-specific aquaporin expression, and pathways of water transport. Plant Physiol 163(3):1254–1265. https://doi.org/10.1104/pp.113.221283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia TM, Heyduk K, Kuzmick E, Mayer JA (2014) Crassulacean acid metabolism biology. New Phytol 204(4):738–740. https://doi.org/10.1111/nph.13127

    Article  CAS  PubMed  Google Scholar 

  • Goff SA (2005) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica) (April, pg 92, 2002). Science 309(5736):879

    CAS  Google Scholar 

  • Gomes D, Agasse A, Thiebaud P, Delrot S, Geros H, Chaumont F (2009) Aquaporins are multifunctional water and solute transporters highly divergent in living organisms. Biochem Biophys Acta 1788(6):1213–1228. https://doi.org/10.1016/j.bbamem.2009.03.009

    Article  CAS  PubMed  Google Scholar 

  • Grondin A, Rodrigues O, Verdoucq L, Merlot S, Leonhardt N, Maurel C (2015) Aquaporins contribute to ABA-triggered stomatal closure through OST1-mediated phosphorylation. Plant Cell 27(7):1945–1954. https://doi.org/10.1105/tpc.15.00421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta AB, Sankararamakrishnan R (2009) Genome-wide analysis of major intrinsic proteins in the tree plant Populus trichocarpa: characterization of XIP subfamily of aquaporins from evolutionary perspective. BMC Plant Biol 9:134. https://doi.org/10.1186/1471-2229-9-134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harlan JR, Wet JMJD, Price EG (1973) Comparative Evolution of Cereals. Evolution 27(2):311–325. https://doi.org/10.2307/2406971

    Article  PubMed  Google Scholar 

  • Hossain MA, Rahman SMM (2011) Total phenolics, flavonoids and antioxidant activity of tropical fruit pineapple. Food Res Int 44(3):672–676. https://doi.org/10.1016/j.foodres.2010.11.036

    Article  CAS  Google Scholar 

  • Huang LB, Pant J, Dell B, Bell RW (2000) Effects of boron deficiency on anther development and floret fertility in wheat (Triticum aestivum L-’Wilgoyne’). Ann Bot 85(4):493–500. https://doi.org/10.1006/anbo.1999.1095

    Article  CAS  Google Scholar 

  • Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyere C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pe ME, Valle G, Morgante M, Caboche M, Adam-Blondon AF, Weissenbach J, Quetier F, Wincker P, Public F-I (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449(7161):463–465. https://doi.org/10.1038/nature06148

    Article  CAS  PubMed  Google Scholar 

  • Johansson I, Karlsson M, Johanson U, Larsson C, Kjellbom P (2000) The role of aquaporins in cellular and whole plant water balance. Biochem Biophys Acta 1465(1–2):324–342

    Article  CAS  Google Scholar 

  • Kaul S, Koo HL, Jenkins J, Rizzo M, Rooney T, Tallon LJ, Feldblyum T, Nierman W, Benito MI, Lin XY, Town CD, Venter JC, Fraser CM, Tabata S, Nakamura Y, Kaneko T, Sato S, Asamizu E, Kato T, Kotani H, Sasamoto S, Ecker JR, Theologis A, Federspiel NA, Palm CJ, Osborne BI, Shinn P, Conway AB, Vysotskaia VS, Dewar K, Conn L, Lenz CA, Kim CJ, Hansen NF, Liu SX, Buehler E, Altafi H, Sakano H, Dunn P, Lam B, Pham PK, Chao Q, Nguyen M, Yu GX, Chen HM, Southwick A, Lee JM, Miranda M, Toriumi MJ, Davis RW, Wambutt R, Murphy G, Dusterhoft A, Stiekema W, Pohl T, Entian KD, Terryn N, Volckaert G, Salanoubat M, Choisne N, Rieger M, Ansorge W, Unseld M, Fartmann B, Valle G, Artiguenave F, Weissenbach J, Quetier F, Wilson RK, de la Bastide M, Sekhon M, Huang E, Spiegel L, Gnoj L, Pepin K, Murray J, Johnson D, Habermann K, Dedhia N, Parnell L, Preston R, Hillier L, Chen E, Marra M, Martienssen R, McCombie WR, Mayer K, White O, Bevan M, Lemcke K, Creasy TH, Bielke C, Haas B, Haase D, Maiti R, Rudd S, Peterson J, Schoof H, Frishman D, Morgenstern B, Zaccaria P, Ermolaeva M, Pertea M, Quackenbush J, Volfovsky N, Wu DY, Lowe TM, Salzberg SL, Mewes HW, Rounsley S, Bush D, Subramaniam S, Levin I, Norris S, Schmidt R, Acarkan A, Bancroft I, Quetier F, Brennicke A, Eisen JA, Bureau T, Legault BA, Le QH, Agrawal N, Yu Z, Martienssen R, Copenhaver GP, Luo S, Pikaard CS, Preuss D, Paulsen IT, Sussman M, Britt AB, Selinger DA, Pandey R, Mount DW, Chandler VL, Jorgensen RA, Pikaard C, Juergens G, Meyerowitz EM, Theologis A, Dangl J, Jones JDG, Chen M, Chory J, Somerville MC, In AG (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408(6814):796–815

    Article  CAS  Google Scholar 

  • Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12):1647–1649. https://doi.org/10.1093/bioinformatics/bts199

    Article  PubMed  PubMed Central  Google Scholar 

  • Keith B, Chua NH (1986) Monocot and dicot pre-mRNAs are processed with different efficiencies in transgenic tobacco. EMBO J 5(10):2419–2425

    Article  CAS  Google Scholar 

  • Krol M, Jaeger A, Bronstert A, Guntner A (2006) Integrated modelling of climate, water, soil, agricultural and socio-economic processes: a general introduction of the methodology and some exemplary results from the semi-arid north-east of Brazil. J Hydrol 328(3–4):417–431. https://doi.org/10.1016/j.jhydrol.2005.12.021

    Article  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  Google Scholar 

  • Laloux T, Junqueira B, Maistriaux LC, Ahmed J, Jurkiewicz A, Chaumont F (2018) Plant and mammal aquaporins: same but different. Int J Mol Sci 19(2):521. https://doi.org/10.3390/ijms19020521

    Article  CAS  PubMed Central  Google Scholar 

  • Lordkaew S, Dell B, Jamjod S, Rerkasem B (2011) Boron deficiency in maize. Plant Soil 342(1–2):207–220. https://doi.org/10.1007/s11104-010-0685-7

    Article  CAS  Google Scholar 

  • Ming R, VanBuren R, Wai CM, Tang H, Schatz MC, Bowers JE, Lyons E, Wang ML, Chen J, Biggers E, Zhang J, Huang L, Zhang L, Miao W, Zhang J, Ye Z, Miao C, Lin Z, Wang H, Zhou H, Yim WC, Priest HD, Zheng C, Woodhouse M, Edger PP, Guyot R, Guo HB, Guo H, Zheng G, Singh R, Sharma A, Min X, Zheng Y, Lee H, Gurtowski J, Sedlazeck FJ, Harkess A, McKain MR, Liao Z, Fang J, Liu J, Zhang X, Zhang Q, Hu W, Qin Y, Wang K, Chen LY, Shirley N, Lin YR, Liu LY, Hernandez AG, Wright CL, Bulone V, Tuskan GA, Heath K, Zee F, Moore PH, Sunkar R, Leebens-Mack JH, Mockler T, Bennetzen JL, Freeling M, Sankoff D, Paterson AH, Zhu X, Yang X, Smith JA, Cushman JC, Paull RE, Yu Q (2015) The pineapple genome and the evolution of CAM photosynthesis. Nat Genet 47(12):1435–1442. https://doi.org/10.1038/ng.3435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miwa K, Takano J, Fujiwara T (2006) Improvement of seed yields under boron-limiting conditions through overexpression of BOR1, a boron transporter for xylem loading, in Arabidopsis thaliana. Plant J 46(6):1084–1091. https://doi.org/10.1111/j.1365-313X.2006.02763.x

    Article  CAS  PubMed  Google Scholar 

  • Miwa K, Takano J, Omori H, Seki M, Shinozaki K, Fujiwara T (2007) Plants tolerant of high boron levels. Science 318(5855):1417. https://doi.org/10.1126/science.1146634

    Article  CAS  PubMed  Google Scholar 

  • Moore J, Hao Z, Zhou K, Luther M, Costa J, Yu LL (2005) Carotenoid, tocopherol, phenolic acid, and antioxidant properties of Maryland-grown soft wheat. J Agric Food Chem 53(17):6649–6657. https://doi.org/10.1021/jf050481b

    Article  CAS  PubMed  Google Scholar 

  • Nguyen MX, Moon S, Jung KH (2013) Genome-wide expression analysis of rice aquaporin genes and development of a functional gene network mediated by aquaporin expression in roots. Planta 238(4):669–681. https://doi.org/10.1007/s00425-013-1918-9

    Article  CAS  PubMed  Google Scholar 

  • Park W, Scheffler BE, Bauer PJ, Campbell BT (2010) Identification of the family of aquaporin genes and their expression in upland cotton (Gossypium hirsutum L.). BMC Plant Biol. https://doi.org/10.1186/1471-2229-10-142

    Article  PubMed  PubMed Central  Google Scholar 

  • Py C, Lacoeuilhe JJ, Teisson C (1987) The pineapple. Cultivation and uses. G.-P, Maisonneuve et Larose

    Google Scholar 

  • Quigley F, Rosenberg JM, Shachar-Hill Y, Bohnert HJ (2002) From genome to function: the Arabidopsis aquaporins. Genome Biol. https://doi.org/10.1186/gb-2001-3-1-research0001

    Article  PubMed  Google Scholar 

  • Reardon T, Vosti SA (1995) Links between rural poverty and the environment in developing-countries - asset categories and investment poverty. World Dev 23(9):1495–1506. https://doi.org/10.1016/0305-750x(95)00061-G

    Article  Google Scholar 

  • Ribot JC, Magalhães AR, Panagides SS (2005) Climate variability, climate change, and social vulnerability in the semi-arid tropics, 1st edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Rong J, Lammers Y, Strasburg JL, Schidlo NS, Ariyurek Y, de Jong TJ, Klinkhamer PGL, Smulders MJM, Vrieling K (2014) New insights into domestication of carrot from root transcriptome analyses. BMC Genom 15:895. https://doi.org/10.1186/1471-2164-15-895

    Article  Google Scholar 

  • Sakurai J, Ishikawa F, Yamaguchi T, Uemura M, Maeshima M (2005) Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant Cell Physiol 46(9):1568–1577

    Article  CAS  Google Scholar 

  • Sinclair E, Wassman III R, Broadley R, Swete Kelly D, Pegg K, Waite G, Stirling G, Bartholomew D (1992) Pineapple pests and disorders-a book for pineapple farmers. In: I International pineapple symposium 334, pp 455–458

  • Sturn A, Quackenbush J, Trajanoski Z (2002) Genesis: cluster analysis of microarray data. Bioinformatics 18(1):207–208. https://doi.org/10.1093/bioinformatics/18.1.207

    Article  CAS  PubMed  Google Scholar 

  • Sutton T, Baumann U, Hayes J, Collins NC, Shi BJ, Schnurbusch T, Hay A, Mayo G, Pallotta M, Tester M, Langridge P (2007) Boron-toxicity tolerance in barley arising from efflux transporter amplification. Science 318(5855):1446–1449. https://doi.org/10.1126/science.1146853

    Article  CAS  PubMed  Google Scholar 

  • Takano J, Wada M, Ludewig U, Schaaf G, von Wiren N, Fujiwara T (2006) The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation. Plant Cell 18(6):1498–1509. https://doi.org/10.1105/tpc.106.041640

    Article  PubMed  PubMed Central  Google Scholar 

  • Vera-Estrella R, Barkla BJ, Amezcua-Romero JC, Pantoja O (2012) Day/night regulation of aquaporins during the CAM cycle in Mesembryanthemum crystallinum. Plant, Cell Environ 35(3):485–501. https://doi.org/10.1111/j.1365-3040.2011.02419.x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by a Grant 2016NZ0001-1 from the Department of Science and Technology of Fujian Province to R.M. and startup fund from Fujian Agriculture and Forestry University to RM.

Author information

Authors and Affiliations

Authors

Contributions

RM and FZ conceived the project. FZ generated the data, analyzed and interprets the data. FZ wrote the manuscript and RM revised the manuscript.

Corresponding author

Correspondence to Ray Ming.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, F., Ming, R. Global identification and expression analysis of pineapple aquaporins revealed their roles in CAM photosynthesis, boron uptake and fruit domestication. Euphytica 215, 132 (2019). https://doi.org/10.1007/s10681-019-2451-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-019-2451-0

Keywords

Navigation