, 215:95 | Cite as

A loss-of-function allele of a TAC1-like gene (SlTAC1) located on tomato chromosome 10 is a candidate for the Erectoid leaf (Erl) mutation

  • Matías González-ArcosEmail author
  • Maria Esther de Noronha Fonseca
  • Daniel Basílio Zandonadi
  • Lázaro E. P. Peres
  • Ana Arruabarrena
  • Demetryus S. Ferreira
  • Zoltan Kevei
  • Fady Mohareb
  • Andrew J. Thompson
  • Leonardo S. Boiteux


The genetic basis of an erectoid leaf phenotype was investigated in distinct tomato breeding populations, including one derived from Solanum lycopersicum ‘LT05’ (with the erectoid leaf phenotype and uniform ripening, genotype uu) × S. pimpinellifollium ‘TO-937’ (with the wild-type leaf phenotype and green fruit shoulder, genotype UU). The erectoid leaf phenotype was inherited as a semi-dominant trait and it co-segregated with the u allele of gene SlGLK2 (Solyc10g008160). This genomic location coincides with a previously described semi-dominant mutation named as Erectoid leaf (Erl). The genomes of ‘LT05’, ‘TO-937’, and three other unrelated accessions (with the wild-type Erl+ allele) were resequenced with the aim of identifying candidate genes. Comparative genomic analyses, including the reference genome ‘Heinz 1706’ (Erl+ allele), identified an Erectoid leaf-specific single nucleotide polymorphism (SNP) in the gene Solyc10g009320. This SNP caused a change of a glutamine codon (present in all the wild-type genomes) to a TAA (= ochre stop-codon) in the Erl allele, resulting in a smaller version of the predicted mutant protein (221 vs. 279 amino acids). Solyc10g009320, previously annotated as an ‘unknown protein’, was identified as a TILLER ANGLE CONTROL1-like gene. Linkage between the Erl and Solyc10g009320 was confirmed via Sanger sequencing of the PCR amplicons of the two variant alleles. No recombinants were detected in 265 F2 individuals. Contrasting S7 near-isogenic lines were also homozygous for each of the alternate alleles, reinforcing Solyc10g009320 as a strong Erl candidate gene and opening the possibility for fine-tuning manipulation of tomato architecture in breeding programs.


Solanum lycopersicum Resequencing Comparative genomic analysis Plant architecture Breeding 



This work was done in the context of MG-A doctoral studies program at the Facultad de Agronomía, Universidad de la República Oriental del Uruguay. We thank A. Manzzioni, I. Laxague and N. Zunini of INIA Salto Grande, and W. P. Dutra and A. F. Costa of Embrapa Vegetable Crops, for their assistance in conducting some of the experiments. LSB and MENF were supported by CNPq and CAPES grants. AJT and FM were supported by BBSRC Research Grant BB/L011611/1.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10681_2019_2418_MOESM1_ESM.pdf (1.1 mb)
Supplementary material 1 (PDF 1076 kb)
10681_2019_2418_MOESM2_ESM.xlsx (250 kb)
Supplementary material 2 (XLSX 250 kb)


  1. Belhaj K, Chaparro-Garcia A, Kamoun S, Patron NJ, Nekrasov V (2015) Editing plant genomes with CRISPR/Cas9. Curr Opin Biotechnol 32:76–84CrossRefGoogle Scholar
  2. Boiteux LS, Fonseca MEN, Simon PW (1999) Effects of plant tissue and DNA purification method on randomly amplified polymorphic DNA-based genetic fingerprinting analysis in carrot. J Am Soc Hortic Sci 124:32–38CrossRefGoogle Scholar
  3. Carmo LS, Murad AM, Resende RO, Boiteux LS, Ribeiro SG, Jorrín-Novo JV, Mehta A (2017) Plant responses to tomato chlorotic mottle virus: proteomic view of the resistance mechanisms to a bipartite begomovirus in tomato. J Proteomics 151:284–292CrossRefGoogle Scholar
  4. Choi Y, Sims GE, Murphy S, Miller JR, Chan AP (2012) Predicting the functional effect of amino acid substitutions and indels. PLoS ONE 7:e46688CrossRefGoogle Scholar
  5. Cowan I (1982) Regulation of water use in relation to carbon gain in higher plants. Encycl Plant Physiol 12:589–612Google Scholar
  6. Coyne DP (1980) Modification of plant architecture and crop yield by breeding. HortScience 15:244–247Google Scholar
  7. Dardick C, Callahan A, Horn R, Ruiz KB, Zhebentyayeva T, Hollender C, Whitaker M, Abbot A, Scorza R (2013) PpeTAC1 promotes the horizontal growth of branches in peach trees and is a member of a functionally conserved gene family found in diverse plants species. Plant J 75:618–630CrossRefGoogle Scholar
  8. Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2008) InfoStat versión 2008. Grupo InfoStat, FCA, Universidad Nacional de Córdoba. ArgentinaGoogle Scholar
  9. Dong H, Zhao H, Xie W, Han Z, Li G, Yao W, Bai X, Hu Y, Guo Z, Lu K, Yang L, Xing Y (2016) A novel tiller angle gene, TAC3, together with TAC1 and D2 largely determine the natural variation of tiller angle in rice cultivars. PLoS Genet 12:e1006412CrossRefGoogle Scholar
  10. Ehleringer JR, Werk KS (1986) Modifications of solar radiation absorption patterns and implications for carbon gain at the leaf level. In: Givnish T (ed) On the economy of plant form and function. Cambridge University Press, Cambridge, pp 57–82Google Scholar
  11. Ezcurra E, Montana C, Arizaga S (1991) Architecture light interception and distribution of Larrea spp. in the Monte Desert Argentina. Ecology 72:23–34CrossRefGoogle Scholar
  12. Falster DS, Westoby M (2003) Leaf size and angle vary widely across species: what consequences for light interception? New Phytol 158:509–525CrossRefGoogle Scholar
  13. Ficcadenti N, Sestili S, Pandolfini T, Cirillo C, Rotino GL, Spena A (1999) Genetic engineering of parthenocarpic fruit development in tomato. Mol Breed 5:463–470CrossRefGoogle Scholar
  14. Friml J, Wisniewska J, Benkova E, Mendgen K, Palme K (2003) Lateral relocation of auxin efflux transporter PIN3 mediates tropism in Arabidopsis. Nature 415:806–809CrossRefGoogle Scholar
  15. Georgiev C, Kraptchev B (1992) Genetics investigation of the “erectoid leaf” character in tomato. Rep Tomato Genet Cooper 42:14Google Scholar
  16. Gillaspy G, Ben-David H, Gruissem W (1993) Fruits: a developmental perspective. Plant Cell 5:1439–1451CrossRefGoogle Scholar
  17. Giordano LB, De Ávila AC, Charchar JM, Ferraz E, Boiteux LS (2000) ‘Viradoro’: a tospovirus-resistant processing tomato cultivar adapted to tropical environments. HortScience 35:1368–1370CrossRefGoogle Scholar
  18. Guseman JM, Webb K, Srinivasan C, Dardick C (2017) DRO1 influences root system architecture in Arabidopsis and Prunus species. Plant J 89:1093–1105CrossRefGoogle Scholar
  19. Huyghe C (1998) Genetics and genetic modifications of plant architecture in grain legumes: a review. Agronomie 18:383–411CrossRefGoogle Scholar
  20. Jiao Y, Wang Y, Xue D, Wang J, Yan M, Liu G et al (2010) Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet 42:541–544CrossRefGoogle Scholar
  21. Kinzer SM, Schwager SJ, Mutschler MA (1990) Mapping of ripening-related or-specific cDNA clones of tomato (Lycopersicon esculentum). Theor Appl Genet 79:489–496CrossRefGoogle Scholar
  22. Ku L, Wei X, Zhang S, Zhang J, Guo S, Chen Y (2011) Cloning and characterization of a putative tac1 ortholog associated with leaf angle in maize (Zea mays L.). PLoS One 6(6):e20621CrossRefGoogle Scholar
  23. Li P, Wang Y, Qian Q, Fu Z, Wang M et al (2007) LAZY1 controls rice shoot gravitropism through regulating polar auxin transport. Cell Res 17:402–410CrossRefGoogle Scholar
  24. Li H, Ruan J, Durbin R (2008) Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res 18:1851–1858CrossRefGoogle Scholar
  25. Lipari V, Paratore A (1988) Parthenocarpy and auxinic treatments in fruiting of tomato in a cold greenhouse. Acta Hortic 229:307–312CrossRefGoogle Scholar
  26. Pattison RJ, Catalá C (2012) Evaluating auxin distribution in tomato (Solanum lycopersicum) through an analysis of the PIN and AUX/LAX gene families. Plant J 70:585–598CrossRefGoogle Scholar
  27. Pearcy RW, Yang W (1998) The functional morphology of light capture and carbon gain in the Redwood forest understorey plant Adenocaulon bicolor Hook. Funct Ecol 12(4):543–552CrossRefGoogle Scholar
  28. Powell AL, Nguyen CV, Hill T, Cheng KL, Figueroa-Balderas R, Aktas H et al (2012) Uniform ripening encodes a Golden 2-like transcription factor regulating tomato fruit chloroplast development. Science 336(6089):1711–1715CrossRefGoogle Scholar
  29. Reinhardt D, Pesce ER, Stieger P, Mandel T, Baltensperger K, Bennett M, Trass J, Friml J, Kuhlemeier C (2003) Regulation of phyllotaxis by polar auxin transport. Nature 426(6964):255CrossRefGoogle Scholar
  30. Roychoudhry S, Kepinski S (2015) Shoot and root branch growth angle control—the wonderfulness of lateralness. Curr Opin Plant Biol 23:124–131CrossRefGoogle Scholar
  31. Ryel RJ, Beyschlag W, Caldwell MM (1993) Foliage orientation and carbon gain in two tussock grasses as assessed with a new whole-plant gas-exchange model. Funct Ecol 7:115–124CrossRefGoogle Scholar
  32. Sarlikioti V, de Visser PHB, Marcelis LFM (2011a) Exploring the spatial distribution of light absorption and photosynthesis of canopies by means of a functional–structural plant model. Ann Bot 107:875–883CrossRefGoogle Scholar
  33. Sarlikioti V, de Visser PHB, Buck-Sorlin GH, Marcelis LFM (2011b) How plant architecture affects light absorption and photosynthesis in tomato: towards an ideotype for plant architecture using a functional–structural plant model. Ann Bot 108(6):1065–1073CrossRefGoogle Scholar
  34. Scorza R, Lightner GW, Liverani A (1989) The pillar peach tree and growth habit analysis of compact X pillar progeny. J Am Soc Hortic Sci 114:98–100Google Scholar
  35. Scorza R, Bassi D, Liverani A (2002) Genetic interactions of pillar (columnar), compact, and dwarf peach tree genotypes. J Am Soc Hortic Sci 127(2):254–261CrossRefGoogle Scholar
  36. Shi J, Dong J, Xue J, Wang H, Yang Z, Jiao Y, Xu L, Huang H (2017a) Model for the role of auxin polar transport in patterning of the leaf adaxial–abaxial axis. Plant J 92(3):469–480CrossRefGoogle Scholar
  37. Shi Z, Jiang Y, Han X, Liu X, Cao R, Qi M, Xu T, Li T (2017b) SlPIN1 regulates auxin efflux to affect flower abscission process. Sci Rep 7(1):14919CrossRefGoogle Scholar
  38. Silva KF, Michereff-Filho M, Fonseca MEN, Silva-Filho JG, Texeira AC, Moita AW, Torres JB, Fernández-Muñoz R, Boiteux LS (2014) Resistance to Bemisia tabaci biotype B of Solanum pimpinellifolium is associated with higher densities of type IV glandular trichomes and acylsugar accumulation. Entomol Exp Appl 151:218–230CrossRefGoogle Scholar
  39. Silva WB, Vicente MH, Robledo JM, Reartes DS, Ferrari RC, Bianchetti R, Araújo WL, Freschi L, Peres LEP, Zsögön A (2018) SELF-PRUNING acts synergistically with DIAGEOTROPICA to guide auxin responses and proper growth form. Plant Physiol 176(4):2904–2916CrossRefGoogle Scholar
  40. Sinoquet H, Sonohat G, Phattaralerphong J, Godin C (2005) Foliage randomness and light interception in 3D digitized trees: an analysis from multiscale discretization of the canopy. Plant Cell Environ 28(9):1158–1170CrossRefGoogle Scholar
  41. Srivastava A, Handa AK (2005) Hormonal Regulation of tomato fruit development: a molecular perspective. J Plant Growth Regul 24:67–82CrossRefGoogle Scholar
  42. Teichmann T, Muhr M (2015) Shaping plant architecture. Front Plant Sci 6:233CrossRefGoogle Scholar
  43. Testa G, Reyneri A, Blandino M (2016) Maize grain yield enhancement through high plant density cultivation with different inter-row and intra-row spacings. Eur J Agron 72:28–37CrossRefGoogle Scholar
  44. The Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485(7400):635–641CrossRefGoogle Scholar
  45. Tworkoski T, Scorza R (2001) Root and shoot characteristics of peach trees with different growth habits. J Am Soc Hortic Sci 126(6):785–790CrossRefGoogle Scholar
  46. Tworkoski T, Miller S, Scorza R (2006) Relationship of pruning and growth morphology with hormone ratios in shoots of pillar and standard peach trees. J Plant Growth Regul 25:145–155CrossRefGoogle Scholar
  47. Tworkoski T, Webb K, Callahan A (2015) Auxin levels and MAX1-4 and TAC1 gene expression in different growth habits of peach. Plant Growth Regul 77(3):279–288CrossRefGoogle Scholar
  48. Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M, Hara N, Kitomi Y, Inukai Y, Ono K, Kanno N, Inoue H, Takehisa H, Motoyama R, Nagamura Y, Wu J, Matsumoto T, Takai T, Okuno K, Yano M (2013) Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat Genet 45:1097–1102CrossRefGoogle Scholar
  49. Valladares F, Pugnaire FI (1999) Tradeoffs between irradiance capture and avoidance in semi-arid environments assessed with a crown architecture model. Ann Bot 83:459–469CrossRefGoogle Scholar
  50. Vanneste S, Friml J (2009) Auxin: a trigger for change in plant development. Cell 136:1005–1016CrossRefGoogle Scholar
  51. Wang Y, Li J (2008) Molecular basis of plant architecture. Annu Rev Plant Biol 59:253–279CrossRefGoogle Scholar
  52. Wang B, Smith SM, Li J (2018) Genetic regulation of shoot architecture. Ann Rev Plant Biol 69:25.1–25.32Google Scholar
  53. Werner C, Ryel RJ, Correia O, Beyschlag W (2001) Structural and functional variability within the canopy and its relevance for carbon gain and stress avoidance. Acta Oecol 22:129–138CrossRefGoogle Scholar
  54. Wiśniewska J et al (2006) Polar PIN localization directs auxin flow in plants. Science 312(5775):883CrossRefGoogle Scholar
  55. Yoshihara T, Iino M (2007) Identification of the gravitropism-related rice gene LAZY1 and elucidation of LAZY1-dependent and -independent gravity signaling pathways. Plant Cell Physiol 48:678–688CrossRefGoogle Scholar
  56. Yoshihara T, Spalding EP, Iino M (2013) AtLAZY1 is a signaling component required for gravitropism of the Arabidopsis thaliana inflorescence. Plant J 74:267–279CrossRefGoogle Scholar
  57. Yu B, Lin Z, Li H, Li X, Li J et al (2007) TAC1, a major quantitative trait locus controlling tiller angle in rice. Plant J 52:891–899CrossRefGoogle Scholar
  58. Zouine M, Maza E, Djari A, Lauvernier M, Frasse P, Smouni A, Pirrello J, Bouzayen M (2017) TomExpress, a unified tomato RNA-Seq platform for visualization of expression data, clustering and correlation networks. Plant J 92:727–735CrossRefGoogle Scholar
  59. Zsögön A, Cermak T, Voytas D, Peres LEP (2017) Genome editing as a tool to achieve the crop ideotype and de novo domestication of wild relatives: case study in tomato. Plant Sci 256:120–130CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Matías González-Arcos
    • 1
    Email author
  • Maria Esther de Noronha Fonseca
    • 2
  • Daniel Basílio Zandonadi
    • 3
  • Lázaro E. P. Peres
    • 4
  • Ana Arruabarrena
    • 1
  • Demetryus S. Ferreira
    • 5
  • Zoltan Kevei
    • 5
  • Fady Mohareb
    • 5
  • Andrew J. Thompson
    • 5
  • Leonardo S. Boiteux
    • 2
  1. 1.Estación Experimental INIA Salto GrandeInstituto Nacional de Investigación Agropecuaria (INIA)SaltoUruguay
  2. 2.Nacional Center for Vegetable Crops Research (CNPH) – Embrapa Vegetable Crops (Hortaliças)BrasíliaBrazil
  3. 3.Universidade Federal do Rio de Janeiro (UFRJ), NupemMacaéBrazil
  4. 4.Laboratory of Hormonal Control of Plant Development, Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de QueirozUniversidade de São Paulo (ESALQ/USP)PiracicabaBrazil
  5. 5.Cranfield Soil and Agrifood InstituteCranfield UniversityCranfieldUK

Personalised recommendations