Skip to main content

Prediction models and selection of agronomic and physiological traits for tolerance to water deficit in cassava

Abstract

The development of efficient and accurate strategies for evaluating and predicting the root yield of cassava (Manihot esculenta Crantz) can reduce the effort and time spent on phenotyping complex traits associated with productivity and abiotic stress. The objective of this study was to select phenotypic traits that are highly associated with fresh root yield (FRY) as well as to establish a prediction model of the performance of genotypes under water deficit conditions. A total of 49 cassava genotypes were evaluated in a complete randomized block design, with three replications and two water conditions: well-watered (control-WW) and water deficit. The physiological and agronomic traits were divided into three groups: Phys (all physiological traits); Phys + ShY (all physiological traits, with addition of shoot yield) and Phys + Agro (all physiological and agronomic traits). They were evaluated using six different predictive models: classification and regression trees, artificial neural network, support vector machines, extreme learning machine (ELM), generalized linear model with stepwise feature selection (GLMSS) and partial least squares (PLS). These same groups, but reduced to only the most important predictive traits, were also analyzed. The most important traits for predicting FRY were number of roots per plant, leaf area index, number of leaves measured in the eighth month, and shoot yield. The selection of the most important traits resulted in the best adjustment of the models, with GLMSS, ELM, and PLS being the models that presented the highest reliability of prediction according to the values of r2 > 0.75 with RMSE ranging from 0.49 to 0.51.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Abdullah SS, Malek MA, Abdullah NS, Kisi O, Yap KS (2015) Extreme learning machines: a new approach for prediction of reference evapotranspiration. J Hydrol 527:184–195

    Article  Google Scholar 

  • Adu MO, Asare PA, Asare-Bediako E, Amenorpe G, Ackah FK, Afutu E, Amoah MN, Yawson DO (2018) Characterising shoot and root system trait variability and contribution to genotypic variability in juvenile cassava (Manihot esculenta Crantz) plants. Heliyon 4:1–24

    Google Scholar 

  • Afonso AM, Ebell MH, Gonzales R, Stein J, Genton B, Senn N (2012) The use of classification and regression trees to predict the likelihood of seasonal influenza. Fam Pract 29:671–677

    Article  Google Scholar 

  • Aidar ST, Morgante CV, Chaves ARM, Costa Neto BP, Vitor AB, Martins DRPS, Silva R, Cruz JL, Oliveira EJ (2015) Características fisiológicas, produção total de raízes e de parte aérea em acessos de Manihot esculenta em condições de déficit hídrico. Rev Bras Geog Fis 8:685–696

    Article  Google Scholar 

  • Aina OO, Dixon AG, Akinrinde EA (2007) Effect of soil moisture stress on growth and yield of cassava in Nigeria. Pak J Biol Sci 10:3085–3090

    Article  CAS  Google Scholar 

  • Allah AAA, Ammar MH, Badawi AT (2010) Screening rice genotypes for drought resistance in Egypt. J Plant Breed Crop Sci 2:205–215

    Google Scholar 

  • Alves AAC, Setter TL (2004) Abscisic acid accumulation and osmotic adjustment in cassava under water deficit. Environ Exp Bot 51:259–271

    Article  CAS  Google Scholar 

  • Andersen CM, Bro R (2010) Variable selection in regression—a tutorial. J Chemom 24:728–737

    Article  CAS  Google Scholar 

  • Avijala MF, Bhering LL, Peixoto LA, Cruz CD, Carneiro PCS, Cuambe CE, Zacarias A (2015) Evaluation of cassava (Manihot esculenta Crantz) genotypes reveals great genetic variability and potential selection gain. Aust J Crop Sci 9:940–947

    Google Scholar 

  • Bergantin RV, Yamauchi A, Pardales JR Jr, Bolatete DM Jr (2004) Screening cassava genotypes for resistance to water deficit during crop establishment. Philipp J Crop Sci 29:29–39

    Google Scholar 

  • Beyene Y, Semagn K, Mugo S, Tarekegne A, Babu R, Meisel B, Sehabiague P, Makumbi D, Magorokosho C, Oikeh S, Gakunga J, Vargas M, Olsen M, Prasanna BM, Banziger M, Crossa J (2015) Genetic gains in grain yield through genomic selection in eight bi-parental maize populations under drought stress. Crop Sci 55:154–163

    Article  Google Scholar 

  • Cabello R, Monneveux P, Bonierbale M, Khan MA (2014) Heritability of yield components under irrigated and drought conditions in andigenum potatoes. Am J Potato Res 91:492–499

    Article  Google Scholar 

  • Campbell CL, Madden LV (1990) Introduction to plant disease epidemiology. Wiley, New York

    Google Scholar 

  • Ceballos H, Okogbenin E, Pérez JC, López-Valle LAB, Debouck D (2010) Cassava. In: Bradshaw J (ed) Root and tuber crops. Springer, New York, pp 53–96

    Chapter  Google Scholar 

  • Ceballos H, Ramirez J, Bellotti AC, Jarvis A, Alvarez E (2011) Adaptation of cassava to changing climates. In: Yadav SS, Redden RJ, Hatfield JL, Lotze-Campen H, Hall AE (eds) Crop adaptation to climate change. Wiley, New York, pp 411–425

    Chapter  Google Scholar 

  • Ceballos H, Kulakow P, Hershey C (2012) Cassava breeding: current status, bottlenecks and the potential of biotechnology tools. Trop Plant Biol 5:73–87

    Article  CAS  Google Scholar 

  • Chikoti PC, Shanahan P, Melis R (2016) Evaluation of cassava genotypes for resistance to cassava mosaic disease and agronomic traits. Am J Plant Sci 7:1122–1128

    Article  CAS  Google Scholar 

  • Christenson BS, Schapaugh WT, An N, Price KP, Prasad V, Fritz AK (2016) Predicting soybean relative maturity and seed yield using canopy reflectance. Crop Sci 56:625–643

    Article  CAS  Google Scholar 

  • CIAT (2017) International Center for Tropical Agriculture. http://ciat.cgiar.org/what-we-do/breeding-better-crops/rooting-for-cassava/. Accessed 12 Dec 2017

  • Dan Z, Hu J, Zhou W, Yao G, Zhu R, Zhu Y, Huang W (2016) Metabolic prediction of important agronomic traits in hybrid rice (Oryza sativa L.). Sci Rep 6:1–9

    Article  Google Scholar 

  • Deo RC, Åžahin M (2015) Application of the extreme learning machine algorithm for the prediction of monthly effective drought index in eastern Australia. Atmos Res 153:512–525

    Article  Google Scholar 

  • Duque LO, Setter TL (2013) Cassava response to water deficit in deep pots: root and shoot growth, ABA, and carbohydrate reserves in stems, leaves and storage roots. Trop Plant Biol 6:199–209

    Article  CAS  Google Scholar 

  • El-Sharkawy MA (2007) Physiological characteristics of cassava tolerance to prolonged drought in the tropics: implications for breeding cultivars adapted to seasonally dry and semiarid environments. J Plant Physiol 19:257–286

    CAS  Google Scholar 

  • El-Sharkawy MA (2012) Stress-tolerant cassava: the role of integrative ecophysiology-breeding research in crop improvement. Open J Soil Sci 2:162–186

    Article  Google Scholar 

  • Embrapa Semiárido. Centro de Pesquisa Agropecuária do Trópico Semiárido. Dados meteorológicos de 2014. http://www.cpatsa.embrapa.br:8080/servicos/dadosmet/ceb-anual.html. Accessed 12 Dec 2017

  • FAO. Food and Agriculture Organization of the United Nations (2013) Save and grow: cassava a guide to sustainable production intensification. http://www.fao.org/3/a-i2929o.pdf. Accessed 12 Dec 2017

  • FAO. Food and Agriculture Organization of the United Nations (2016) Food outlook: biannual report on global food markets. http://www.fao.org/3/a-i6198e.pdf. Accessed 15 Jan 2018

  • Farfan IDB, La Fuente GN, Murray SC, Isakeit T, Huang PC, Warburton M, Williams P, Windham GL, Kolomiets M (2015) Genome wide association study for drought, aflatoxin resistance, and important agronomic traits of maize hybrids in the sub-tropics. PLoS ONE 10:0117737

    Article  Google Scholar 

  • Ferraro DO, Rivero DE, Ghersa CM (2009) An analysis of the factors that influence sugarcane yield in northern Argentina using classification and regression trees. Field Crops Res 112:149–157

    Article  Google Scholar 

  • Hansen PM, Jørgensen JR, Thomsen A (2002) Predicting grain yield and protein content in winter wheat and spring barley using repeated canopy reflectance measurements and partial least squares regression. J Agric Sci 139:307–318

    Article  Google Scholar 

  • Hinkossa A, Gebeyehu S, Zeleke H (2013) Generation mean analysis and heritability of drought resistance in common bean (Phaseolus vulgaris L.). Afr J Agric Res 8:1319–1329

    Article  Google Scholar 

  • Ji B, Sun Y, Yang S, Wan J (2007) Artificial neural networks for rice yield prediction in mountainous regions. J Agric Sci 145:249–261

    Article  Google Scholar 

  • Kaul M, Hill RL, Walthall C (2005) Artificial neural networks for corn and soybean yield prediction. Agric Syst 85:1–18

    Article  Google Scholar 

  • Kawano K, Fukuda WMG, Cenpukdee U (1987) Genetic and environmental effects on dry matter content of cassava root 1. Crop Sci 27:69–74

    Article  Google Scholar 

  • Laban TF, Kizito EB, Baguma Y, Osiru D (2013) Evaluation of Ugandan cassava germplasm for drought tolerance. Int J Agric Crop Sci 5:212–226

    Google Scholar 

  • Lin WS, Yang CM, Kuo BJ (2012) Classifying cultivars of rice (Oryza sativa L.) based on corrected canopy reflectance spectra data using the orthogonal projections to latent structures (O-PLS) method. Chemometr Intell Lab Syst 115:25–36

    Article  CAS  Google Scholar 

  • Liu J, Zheng Q, Ma Q, Gadidasu KK, Zhang P (2011) Cassava genetic transformation and its application in breeding. J Integr Plant Biol 53:552–569

    Article  CAS  Google Scholar 

  • Lopes MS, Reynolds MP, Jalal-Kamali MR, Moussa M, Feltaous Y, Tahir ISA, Barma N, Vargas M, Mannes Y, Baum M (2012) The yield correlations of selectable physiological traits in a population of advanced spring wheat lines grown in warm and drought environments. Field Crops Res 128:129–136

    Article  Google Scholar 

  • Mehmood T, Liland KH, Snipen L, Solve S (2012) A review of variable selection methods in partial least squares regression. Chemometr Intell Lab Syst 118:62–69

    Article  CAS  Google Scholar 

  • Mohammadi R, Heidari B, Haghparast R (2013) Traits associated with drought tolerance in spring durum wheat (Triticum turgidum L. var. durum) breeding lines from international germplasm. Crop Breed J 3:87–98

    Google Scholar 

  • Mohammadi K, Shamshirband S, Motamedi S, Petković D, Hashim R, Gocic M (2015) Extreme learning machine based prediction of daily dew point temperature. Comput Electron Agric 117:214–225

    Article  Google Scholar 

  • Morante N, Sánchez T, Ceballos H, Calle F, Pérez JC, Egesi C, Cuambe CE, Escobar AF, Ortiz D, Chavez AL, Fregene M (2010) Tolerance to postharvest physiological deterioration in cassava roots. Crop Sci 50:1333–1338

    Article  Google Scholar 

  • Mucherino A, Papajorgji P, Pardalos PM (2009) A survey of data mining techniques applied to agriculture. Oper Res 9:121–140

    Google Scholar 

  • Okogbenin E, Setter TL, Ferguson M, Mutegi R, Ceballos H, Olasanmi B, Fregene M (2013) Phenotypic approaches to drought in cassava: review. Front Physiol 4:1–15

    Article  Google Scholar 

  • Olatunji SO, Selamat A, Abdulraheem A (2014) A hybrid model through the fusion of type-2 fuzzy logic systems and extreme learning machines for modelling permeability prediction. Inf Fusion 16:29–45

    Article  Google Scholar 

  • Oliveira EJ, Aidar ST, Morgante CV, Chaves ARM, Cruz JL, Coelho Filho MA (2015) Genetic parameters for drought-tolerance in cassava. Pesqui Agropecu Bras 50:233–241

    Article  Google Scholar 

  • Oliveira EJ, Morgante CV, Aidar ST, Chaves ARM, Antonio RP, Cruz JL, Coelho Filho MA (2017) Evaluation of cassava germplasm for drought tolerance under field conditions. Euphytica 213:188–208

    Article  Google Scholar 

  • Park SJ, Hwang CS, Vlek PLG (2005) Comparison of adaptive techniques to predict crop yield response under varying soil and land management conditions. Agric Syst 85:59–81

    Article  Google Scholar 

  • R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/. Assessed 22 Feb 2018

  • Richards RA (2006) Physiological traits used in the breeding of new cultivars for water-scarce environments. Agric Water Manag 80:197–211

    Article  Google Scholar 

  • Richards RA, Rebetzke GJ, Condon AG, Van-Herwaarden AF (2002) Breeding opportunities for increasing the efficiency of water use and crop yield in temperate cereals. Crop Sci 42:111–121

    Article  Google Scholar 

  • Ruß G (2009) Data mining of agricultural yield data: a comparison of regression models. In: 9th industrial conference, vol 5633, pp 24–37

    Chapter  Google Scholar 

  • Silva RS, Moura EF, Farias-Neto JT, Sampaio JE (2016) Genetic parameters and agronomic evaluation of cassava genotypes. Pesqui Agropecu Bras 51:834–841

    Article  Google Scholar 

  • Tumuhimbise R, Shanahan P, Melis R, Kawuki R (2015) Genetic variation and association among factors influencing storage root bulking in cassava. J Agric Sci 153:1267–1280

    Article  Google Scholar 

  • Vaezi B, Bavei V, Shiran B (2010) Screening of barley genotypes for drought tolerance by agro-physiological traits in field condition. Afr J Agric Res 5:881–892

    Google Scholar 

  • Weber VS, Araus JL, Cairns JE, Sanchez C, Melchinger AE, Orsini E (2012) Prediction of grain yield using reflectance spectra of canopy and leaves in maize plants grown under different water regimes. Field Crops Res 128:82–90

    Article  Google Scholar 

  • Wold S, Sjöström M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemometr Intell Lab Syst 58:109–130

    Article  CAS  Google Scholar 

  • Yin Z, Feng Q, Yang L, Deo RC, Wen X, Si J, Xiao S (2017) Future projection with an extreme-learning machine and support vector regression of reference evapotranspiration in a mountainous inland watershed in north-west China. Water 9:880

    Article  Google Scholar 

  • Zhao P, Liu P, Shao J, Li C, Wang B, Guo X, Yan B, Xia Y, Peng M (2015) Analysis of different strategies adapted by two cassava cultivars in response to drought stress: ensuring survival or continuing growth. J Exp Bot 66:1477–1488

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Fundação de Amparo à Pesquisa do Estado da Bahia (FAPESB), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the financial assistance and scholarship support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eder Jorge de Oliveira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 26 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos Silva, P.P., e Sousa, M.B. & de Oliveira, E.J. Prediction models and selection of agronomic and physiological traits for tolerance to water deficit in cassava. Euphytica 215, 73 (2019). https://doi.org/10.1007/s10681-019-2399-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-019-2399-0

Keywords