Advertisement

Euphytica

, 215:48 | Cite as

Screening of wild potato genetic resources for combined resistance to late blight on tubers and pale potato cyst nematodes

  • S. Bachmann-PfabeEmail author
  • T. Hammann
  • J. Kruse
  • K. J. Dehmer
Article

Abstract

The Leibniz Institute of Plant Genetics and Crop Plant Research maintains a diverse collection of wild potato germplasm with more than 2800 accessions from 139 botanical species, 19 Solanum series and 14 countries of origin. During the past two decades, almost half of the collection has been screened for resistance to late blight (Phytophthora infestans) and pale cyst nematode (Globodera pallida (Pa2/3)) infection under laboratory conditions. In particular, resistance to tuber blight was considered, which is an important component of P. infestans resistance and has not been investigated that detailed yet. Out of the 1055 accessions tested, 68 were very resistant and 311 were classified as partially resistant against tuber blight. Besides in accessions of species well-known for foliage resistance, resistance to tuber blight was also observed in previously less reported species such as S. acaule, S. fendleri, S. megistacrolobum, S. polytrichon, S. jamesii, S. trifidum, and S. tarnii. In regard to G. pallida infection, 78 out of 749 tested accessions were classified as resistant, belonging to the species S. acaule, S. circaeifolium, S. gourlayi, S. kurtzianum, S. oplocense, S. sparsipilum, S. spegazzini and S. vernei. New or previously less reported sources of G. pallida resistance were identified in accessions of S. brevicaule, S. demissum and S. microdontum. In various accessions of different species, combined resistance was observed and the relationship to their country of origin is discussed.

Keywords

Solanum species Germplasm collection Tuber diseases Screening Globodera pallida Phytophthora infestans 

Notes

Acknowledgements

We thank Marlis Klewsaat, Monika Vandrey and Ulrike Behrendt who were responsible for wild potato cultivation and for their technical assistance during the testing, Konrad Schüler and Ulrich Darsow who established the P. infestans testing series and maintained the cooperation between the IPK Potato Collection and the JKI, Institute for Breeding Research on Agricultural Crops, for many years. We also thank the Mecklenburg-Western Pomeranian Federal State Office of Agriculture, Food Security and Fishery, Plant Protection Service for the long year cooperation and the performance of the nematode resistance screening.

Authors’ contribution

SBP analysed and interpreted the data and drafted the initial manuscript, TH coordinated the resistance testing to P. infestans since 2007 and supported data analysis and the drafting of the manuscript, JK coordinated the resistance test to G. pallida and helped to analyze and interpret the results, KJD organized the testing and contributed to the preparation of the whole manuscript. All authors read and approved the manuscript.

Compliance with ethical standards

Conflict of interest

All authors have declared that they have no conflict of interest.

Supplementary material

10681_2019_2364_MOESM1_ESM.xlsx (71 kb)
Electronic supplementary material 1 (XLSX 71 kb)
10681_2019_2364_MOESM2_ESM.xlsx (36 kb)
Electronic supplementary material 1 (XLSX 37 kb)

References

  1. Andrivon D (1996) The origin of Phytophthora infestans populations present in Europe in the 1840s: a critical review of historical and scientific evidence. Plant Pathol 45(6):1027–1035CrossRefGoogle Scholar
  2. Andrivon D, Corbière R, Lucas JM, Pasco C, Gravoueille JM, Pellé R, Dantec JP, Ellissèche D (2003) Resistance to late blight and soft rot in six potato progenies and glycoalkaloid contents in the tubers. Am J Pot Res 80(2):125–134CrossRefGoogle Scholar
  3. Anonymus (2018) Euroblight—Pathogen characteristics and host resistance—Genotype map. https://agro.au.dk/forskning/internationale-platforme/euroblight/pathogen-characteristics-and-host-resistance/genotype-map. Accessed 12 Dec 2018
  4. Ballvora A, Hesselbach J, Niewöhner J, Leister D, Salamini F, Gebhardt C (1995) Marker enrichment and high-resolution map of the segment of potato chromosome VII harboring the nematode resistance gene Gro1. Mol Gen Genet 249(1):82–90CrossRefGoogle Scholar
  5. Bethke PC, Haltermann DA, Jansky S (2017) Are we getting better at using wild potato species in light of new tools? Crop Sci 57:1241–1258CrossRefGoogle Scholar
  6. Black W (1953) A genetical basis for the classifiaction of strains of Phytophthora infestans. Proc R Soc Edinb B 65(1):36–51Google Scholar
  7. Bradshaw JE, Hacket CA, Meyer RC, Milbourne D, McNicol JW, Phillips MS, Waugh R (1998) Identification of ALFP and SSR markers associated with quantitative resistance to Globodera pallida (Stone) in tetraploid potato (Solanum tuberosum ssp. tuberosum) with a view to marker-assisted selection. Theor Appl Genet 97(1-2):202–210CrossRefGoogle Scholar
  8. Bryan J, McLean K, Bradshaw E, de Jong S, Phillips M, Castelli L, Waugh R (2002) Mapping QTLs for resistance to the cyst nematode Globodera pallida derived from the wild potato species Solanum vernei. Theor Appl Genet 105(1):68–77CrossRefGoogle Scholar
  9. Caromel B, Mugniéry D, Lefebvre V, Andrzejewski S, Ellissèche D, Kerlan MC, Rousselle P, Rousselle-Bourgeois F (2003) Mapping QTLs for resistance against Globodera pallida (Stone) Pa2/3 in a diploid potato progeny originating from Solanum spegazzinii. Theor Appl Genet 106(8):1517–1523CrossRefGoogle Scholar
  10. Caromel B, Mugniéry D, Kerlan MC, Andrzejewski S, Palloix A, Ellissèche D, Rousselle-Bourgeois F, Lefebvre V (2005) Resistance quantitative trait loci originating from Solanum sparsipilum act independently on the sex ratio of Globodera pallida and together for developing a necrotic reaction. Mol Plant Microbe Interact 18(11):1186–1194CrossRefGoogle Scholar
  11. Castelli L, Ramsay G, Bryan G, Sharon JN, Phillips MS (2003) New sources of resistance to the potato cyst nematodes Globodera pallida and G. rostochiensis in the Commonwealth Potato Collection. Euphytica 129:377–386CrossRefGoogle Scholar
  12. Champouret N (2010) Functional genomics of Phytophthora infestans effectors and Solanum resistance genes. Dissertation, Wageningen UniversityGoogle Scholar
  13. Chavez R, Jackson MT, Schmiediche PE, Franco J (1988) The importance of wild potato species resistant to the potato cyst nematode Globodera pallida, pathotypes P4A and P5A, in potato breeding. I. Resistance studies. Euphytica 37:9–14CrossRefGoogle Scholar
  14. Colon LT, Budding DJ, Keizer L, Pieters M (1995) Components of resistance to late blight (Phytophthora infestans) in eight South American Solanum species. Eur J Plant Pathol 101(4):441–456CrossRefGoogle Scholar
  15. Dalamu BV, Umamaheshwari R, Sharma R, Kaushik SK, Joseph TA, Singh BP, Gebhardt C (2012) Potato cyst nematode (PCN) resistance: genes, genotypes and markers—an update. SABRAO J Breed Genet 44(2):202–228Google Scholar
  16. de Ruiz GJI, Carrasco A, Salazar A, Barrena I, Iturritxa E, Marquinez R, Legorburu FJ, Ritter E (1998) Wild Solanum species as resistance sources against different pathogens of potato. Potato Res 41(1):57–68CrossRefGoogle Scholar
  17. Ellenby C (1952) Resistance to the potato-root eelworm, Heterodera rostochiensis WOLLENWEBER. Nature 170:1016CrossRefGoogle Scholar
  18. Franco J, Main G (2006) Screening for resistance to Nacobbus aberrans and Globodera spp. in wild potato species resistant to other pathogens. Nematol Mediterr 34:165–169Google Scholar
  19. Fry W (2008) Phytophthora infestans: the plant (and R gene) destroyer. Mol Plant Pathol 9(3):385–402CrossRefGoogle Scholar
  20. Gabriel J, Coca A, Plata G, Parlevliet JE (2007) Characterization of the resistance to Phytophthora infestans in local potato cultivars in Bolivia. Euphytica 153:321–328CrossRefGoogle Scholar
  21. Gebhardt C (2013) Bridging the gap between genome analysis and precision breeding in potato. Review. Trend Genet 29(4):248–256CrossRefGoogle Scholar
  22. Gebhardt C, Valkonen JP (2001) Organization of genes controlling disease resistance in the potato genome. Annu Rev Phytopathol 39:79–102CrossRefGoogle Scholar
  23. Gómez-Alpizar L, Carbone I, Ristaino JB (2007) An Andean origin of Phytophthora infestans inferred from mitochondrial and nuclear gene genealogies. Proc Natl Acad Sci USA 104(9):3306–3311CrossRefGoogle Scholar
  24. Goss EM, Tabima J, Cooke DEL, Restrepo S, Fry WE, Forbes GA, Fieland VJ, Cardenas M, Grünwald NJ (2014) The Irish potato famine pathogen Phytophthora infestans originated in central Mexico rather than the Andes. Proc Natl Acad Sci USA 111(24):8791–8796CrossRefGoogle Scholar
  25. Grünwald NJ, Flier WG (2005) The biology of Phytophthora infestans at its center of origin. Annu Rev Phytopathol 43:171–190CrossRefGoogle Scholar
  26. Hammann T (2013) Inwertsetzung wilder Verwandter der Kartoffel zur Entwicklung von genetisch erweitertem Keimplasma mit verbesserter Resistenz gegen die Kraut- und Knollenfäule (Phytophthora infestans). J Cultiv Plants 65(7):285–292Google Scholar
  27. Haverkort AJ, Boonekamp PM, Hutten R, Jacobsen E, Lotz LAP, Kessel GJT, Visser RGF, van der Vossen EAG (2008) Societal costs of late blight in potato and prospects of durable resistance through cisgenic modification. Potato Res 51(1):47–57CrossRefGoogle Scholar
  28. Hawkes JG (1990) The potato: evolution, biodiversity and genetic resources. Belhaven, LondonGoogle Scholar
  29. Janssen R, Bakker J, Gommers JF (1991) Mendelian proof for a gene-for-gene relationship between virulence of Globodera rostochiensis and the H1 resistance gene in Solanum tuberosum ssp. andigena CPC 1673. Revue Nématologia 14(2):207–211Google Scholar
  30. Khiutti A, Spooner DM, Jansky SH, Halterman DA (2015) Testing taxonomic predictivity of foliar and tuber resistance to Phytophthora infestans in wild relatives of potato. Phytopathology 105(9):1198–1205CrossRefGoogle Scholar
  31. Kreike CM, de Koning J, Vinke JH, van Ooijen JW, Stiekema WJ (1994) Quantitatively-inherited resistance to Globodera pallida is dominated by one major locus in Solanum spegazzinii. Theor Appl Genet 88(6–7):764–769CrossRefGoogle Scholar
  32. Kuhl J, Hanneman R, Havey M (2001) Characterization and mapping of Rpi1, a late-blight resistance locus from diploid (1EBN) Mexican Solanum pinnatisectum. Mol Genet Genomics 265(6):977–985CrossRefGoogle Scholar
  33. López M, Riegel R, Lizana C, Behn A (2015) Identification of virus and nematode resistance genes in the Chilota Potato Genebank of the Universidad Austral de Chile. Chilean J Agric Res 75(3):320–327CrossRefGoogle Scholar
  34. Mayton H, Griffiths H, Simko I, Cheng S, Lorzenzen J, de Jong W, Fry WE (2010) Foliar and tuber blight resistance in a Solanum tuberosum breeding population. Plant Breed 129(2):197–201CrossRefGoogle Scholar
  35. Micheletto S, Andreoni M, Huarte MA (1999) Vertical resistance to late blight in wild potato species from Argentina. Euphytica 110:133–138CrossRefGoogle Scholar
  36. Minnis ST, Hydock P, Ibrahim SK, Grove IG, Evans K, Russel MD (2002) Potato cyst nematodes in England and Wales—occurence and distribution. Ann Appl Biol 140(2):187–195CrossRefGoogle Scholar
  37. Moloney C, Griffin D, Jones PW, Bryan G, McLean K, Bradshaw JE (2010) Development of diagnostic markers for use in breeding potatoes resistant to Globodera pallida pathotype Pa2/3 using germplasm derived from Solanum tuberosum ssp. andigena CPC 2802. Theor Appl Genet 120(3):679–689CrossRefGoogle Scholar
  38. Mugniéry D, Bossis M, Pierre JS (1992) Hybridization between Globodera rostochiensis (Wollenweber), G. pallida (Stone), G. virginiae (Miller & Gray), G. solanacearum (Miller & Gray) and Globodera “mexicana” (Campos-Vaela). Description and future of the hybrids. Fundam Appl Nematol 15(4):375–382Google Scholar
  39. Niere B, Krüssel S, Osmers K (2014) Auftreten einer außergewöhnlich virulenten Population der Kartoffelzystennematoden. J Kulturpflanzen 66(11):426–427Google Scholar
  40. Park TH, Gros J, Sikkema A, Vleeshouwers VGAA, Muskens M, Allefs S, Jacobsen E, Visser RGF, van der Vossen EAG (2005a) The late blight resistance locus Rpi-blb3 from Solanum bulbocastanum belongs to a major late blight R gene cluster on chromosome 4 of potato. Mol Plant Microbe Interact 18(7):722–729CrossRefGoogle Scholar
  41. Park TH, Vleeshouwers VGAA, Kim JB, Hutten RCB, Visser RGF (2005b) Dissection of foliage and tuber late blight resistance in mapping populations of potato. Euphytica 143(1–2):75–83CrossRefGoogle Scholar
  42. Rodewald J, Trognitz B (2013) Solanum resistance genes against Phytophthora infestans and their corresponding avirulence genes. Mol Plant Pathol 14(7):740–757CrossRefGoogle Scholar
  43. Sliwka J, Jakuczun H, Lebecka R, Marczewski W, Gebhardt C, Zimnoch-Guzowska E (2006) The novel, major locus Rpi-phu1 for late blight resistance maps to potato chromosome IX and is not correlated with long vegetation period. Theor Appl Genet 113(4):685–695CrossRefGoogle Scholar
  44. Song J, Bredeen JM, Naess KS, Raasch JA, Wieglus SM, Haberlach GT, Liu J, Kuang H, Austin-Phillips S, Buell CR, Helgeson JP, Jiang J (2003) Gene RB cloned from Solanum bulbocastanum confers broad spectrum resistance to potato late blight. Proc Natl Acad Sci USA 100(16):9128–9133CrossRefGoogle Scholar
  45. Stewart HE, Wastie RL, Bradshaw JE, Brown J (1992) Inheritance of resistance to late blight in foliage and tubers of progenies from parents differing in resistance. Potato Res 35(3):313–319CrossRefGoogle Scholar
  46. Stone AR, Fuller JM, Howard HW (1979) The presence of the pathotype Pa2 of Globodera pallida in the UK. Plant Pathol 28(3):134–137CrossRefGoogle Scholar
  47. Tan MYA, Hutten RCB, Celis C, Park TH, Niks RE, Visser RGF, van Eck HJ (2008) The RPi-mcd1 locus from Solanum microdontum involved in resistance to Phytophthora infestans, causing a delay in infection, maps on potato chromosome 4 in a cluster of NBS-LRR genes. Mol Plant Microbe Interact 21(7):909–918CrossRefGoogle Scholar
  48. Tan MYA, Park TH, Alles R, Hutten RCB, Visser RGF, van Eck H (2009) GpaXI tarl originating from Solanum tarijense is a major resistance locus to Globodera pallida and is localised on chromosome 11 of potato. Theor Appl Genet 119(8):1477–1487CrossRefGoogle Scholar
  49. Thieme R, Rakosy-Tican E, Gavrilenka T, Antonova O, Schubert J, Nachtigall M, Heimbach U, Thieme T (2008) Novel somatic hybrids (Solanum tuberosum L. + Solanum tarnii) and their fertile BC1 progenies express extreme resistance to potato virus Y and late blight. Theor Appl Genet 116(5):691–700CrossRefGoogle Scholar
  50. Thieme R, Rakosy-Tican E, Nachtigall M, Schubert J, Hammann T, Antonova O, Gavrilenko T, Heimbach U, Thieme T (2010) Characterization of the multiple resistance traits of somatic hybrids between Solanum cardiophyllum Lindl. and two commercial potato cultivars. Plant Cell Rep 29(10):1187–1201CrossRefGoogle Scholar
  51. Thiéry M, Mugniéry D, Bossis M, Sosa-Moss C (1997) Crossing between Globodera pallida Stone and G. “mexicana” Campos-Vela: species concept and heritability of the development on potato. Fundam Appl Nematol 20(6):551–556Google Scholar
  52. Trognitz BR, Bonierbale M, Landeo JA, Forbes G, Bradshaw JE, Mackay GR, Waugh R, Huarte MA, Colon LT (2001) Improving potato resistance to disease under the global initiative on late blight. In: Cooper HD, Spillane C, Hodgkin T (eds) Broadening the genetic base of crop production. IPGI/FAO, Rom, pp 385–398CrossRefGoogle Scholar
  53. van der Rouppe VJ, Wolters P, Folkertsma R, Hutten R, van Zandvoort P, Vinke H, Kanyuka K, Bendahmane A, Jacobsen E, Janssen R, Bakker E (1997) Mapping of the cyst nematode resistance locus Gpa2 in potato using a strategy based on comigrating AFLP markers. Theor Appl Genet 95(5–6):874–880Google Scholar
  54. van der Vossen EAG, Sikkema A, Hekkert BL, Gros J, Stevens P, Muskens M, Wouters D, Pereira A, Stiekema W, Allefs S (2003) An ancient R gene from the wild potato species Solanum bulbocastanum confers broad-spectrum resistance to Phytophthora infestans in cultivated potato and tomato. Plant J 36(6):867–882CrossRefGoogle Scholar
  55. van der Vossen EAG, Gros J, Sikkema A, Muskens M, Wouters D, Wolters P, Pereira A, Allefs S (2005) The Rpi-blb2 gene from Solanum bulbocastanum is an Mi-1 gene homolog conferring broad-spectrum late blight resistance in potato. Plant J 44(2):208–222CrossRefGoogle Scholar
  56. Vleeshouwers VGAA, Rietman H, Krenek P, Champouret N, Young C, Oh SK, Wang M, Bouwmester K, Vosman B, Visser RGF, Jacobsen E, Govers F, Kamoun S, van der Vossen EAG (2008) Effector genomics accelerates discovery and functional profiling of potato disease resistance and Phytophthora infestans avirulence genes. PLoS ONE 3(8):e2875CrossRefGoogle Scholar
  57. Vleeshouwers VGAA, Raffaele S, Vossen JH, Champouret N, Oliva R, Segretin ME, Rietman H, Cano LM, Lokossou A, Kessel G, Pel M, Kamoun S (2011) Understanding and exploiting late blight resistance in the age of effectors. Annu Rev Phytopathol 49:507–531CrossRefGoogle Scholar
  58. Whitehead AG (1991) Selection for virulence in the potato cyst-nematode, Globodera pallida. Ann Appl Biol 118(2):395–402CrossRefGoogle Scholar
  59. Yang L, Wang D, Xu Y, Zhao H, Wang L, Cao X, Chen Y, Chen Q (2017) A new resistance gene against potato late blight originating from Solanum pinnatisectum located on potato chromosome 7. Front Plant Sci 8:1729CrossRefGoogle Scholar
  60. Zlesak DC, Thill CA (2004) Foliar resistance to Phytophthora infestans (Mont.) de Bary (US-8) in 13 Mexican and South American Solanum species having EBNs of 1,2 and 4 and implications for breeding. Am J Pot Res 81(6):421–429CrossRefGoogle Scholar
  61. Zoteyeva N, Chrzanowska M, Flis B, Zimnoch-Guzowska E (2012) Resistance to pathogens of the potato accessions from the collection of N.I. Vavilov Institute of Plant Industry (VIR). Am J Pot Res 89(4):277–293CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Genebank, Satellite Collections NorthSanitz OT Gross LuesewitzGermany
  2. 2.Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Agricultural CropsSanitz OT Gross LuesewitzGermany
  3. 3.Mecklenburg-Western Pomeranian Federal State Office of Agriculture, Food Security and Fishery, Plant Protection ServiceRostockGermany

Personalised recommendations