Skip to main content
Log in

Morph-physiological responses of cotton interspecific chromosome substitution lines to low temperature and drought stresses

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Limited knowledge about genetic and physiological traits associated with drought and low temperature stresses and narrow genetic diversity in Upland cotton (Gossypium hirsutum L.) are serious impediments in its genetic improvement. The objectives of this research were to determine the genetic and physiological traits associated with drought and low temperature effects and to identify chromosomal effects on these traits using chromosome substitution (CS) lines from three alien species of Gossypium, G. barbadense, G. tomentosum, and G. mustelinum, respectively. Two experiments were conducted to study low temperature and drought stress effects during seedling emergence and early growth stages in 21 cotton CS-lines with parent, Texas Marker (TM)-1. In Experiment I, plants were grown at optimum (30/22 °C) and low (22/14 °C) temperature conditions under optimum water and nutrient conditions. In Experiment II, plants were grown at optimum water (soil moisture content of 0.167 m3 m−3) and in drought (soil moisture content 0.105 m3 m−3) conditions under optimum temperature conditions. Above- and below-ground growth traits including several root traits of the CS lines were assessed at 25 days after sowing. The findings suggest which substituted chromosome or chromosome segment from the alien species likely harbors one or more genes for higher and lower tolerance to low temperature, respectively. CS-T04 and CSB08sh showed higher and lower tolerance to low temperature, respectively and CS-T04 and CS-B22sh showed higher and lower tolerance, respectively, to drought. CS lines are valuable analytical tool and useful genetic resources for targeted exploitation of beneficial genes for drought and low temperature stresses in Upland cotton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CS:

Chromosome substitution

DAS:

Days after sowing

SPAR:

Soil–Plant–Atmosphere-Research

References

  • Ashraf M (2002) Salt tolerance of cotton: some new advances. Crit Rev Plant Sci 21:1–30

    Article  CAS  Google Scholar 

  • Ball RA, Oosterhuis DM, Mauromoustakos A (1994) Growth dynamics of the cotton plant during water-deficit stress. Agron J 86:788–795

    Article  Google Scholar 

  • Basal H, Unay A, Canavar O, Yavas I (2009) Combining ability for fiber quality parameters and within-boll yield components in intraspecific and interspecific cotton populations. Span J Agric Res 7:364–374

    Article  Google Scholar 

  • Bland WL (1993) Cotton and soybean root system growth in three soil temperature regimes. Agric J 85:906–911

    Google Scholar 

  • Bowman D, Gutiérrez O (2003) Sources of fiber strength in the US upland cotton crop from 1980 to 2000. J Cotton Sci 7:164–169

    Google Scholar 

  • Bradow JM (1990) Chilling sensitivity of photosynthetic oil-seedlings. I. Cotton and sunflower. J Exp Bot 233:1585–1593

    Article  Google Scholar 

  • Burke JJ, Mahan JR, Hatfield JL (1988) A relationship between crop specific thermal kinetic windows and biomass production. Agron J 80:553–556

    Article  Google Scholar 

  • Chapple CS, Vogt T, Ellis BE, Somerville CR (1992) An Arabidopsis mutant defective in the general phenylpropanoid pathway. Plant Cell 4:1413–1424

    Article  CAS  Google Scholar 

  • Chinnusamy V, Schumaker K, Zhu JK (2004) Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J Exp Bot 55:225–236

    Article  CAS  Google Scholar 

  • Christiansen MN, Thomas RO (1969) Season-long effects of chilling treatments applied to germinating cottonseed. Crop Sci 9:672–673

    Article  Google Scholar 

  • Costa C, Dwyer LM, Zhou X, Dutilleul P, Hamel C, Reid LM, Smith DL (2002) Root morphology of contrasting maize genotypes. Agron J 94:96–101

    Article  Google Scholar 

  • Gerik TJ, Faver KL, Thaxton PM, El-Zik KM (1996) Late-season water stress in cotton: I. Plant growth, water use, and yield. Crop Sci 36:914–921

    Article  Google Scholar 

  • Gerik TJ, Oosterhuis DM, Tolbert HA (1998) Managing cotton nitrogen supply. Advn Agron 64:115–147

    Article  Google Scholar 

  • Grimes DW, Yamada H, Dickens WL (1969) Functions for cotton (Gossypium hirsutum L.) production from irrigation and nitrogen fertilization variables: I. Yield and evapotranspiration. Agron J 61:769–773

    Article  Google Scholar 

  • Haldimann P (1997) Chilling-induced changes to carotenoid composition, photosynthesis and the maximum quantum yield of photosystem II photochemistry in two maize genotypes differing in tolerance to low temperature. J Plant Physiol 151:610–619

    Article  CAS  Google Scholar 

  • Hammer GL, Dong Z, McLean G, Doherty A, Messina C, Schussler J, Zinselmeier C, Paszkiewicz S, Cooper M (2009) Can changes in canopy and/or root system architecture explain historical maize yield trends in the US Cornbelt? Crop Sci 49:299–312

    Article  Google Scholar 

  • Hewitt EJ (1952) Sand and water culture methods used in the study of plant nutrition. CAB Commonw Agric Bur Technol Commun 22:189

    Google Scholar 

  • Hodges HF, Reddy KR, McKinion JM, Reddy VR (1993) Temperature effects on cotton. Bulletin 990, Mississippi State University, Mississippi State, MS, p 10

  • Holaday AS, Mahan JR, Payton P (2016) Effects of chilling temperatures on photosynthesis. J Cotton Sci 20:220–231

    CAS  Google Scholar 

  • Iqbal MJ, Reddy OUK, El-Zik KM, Pepper AE (2001) A genetic bottleneck in the ‘evolution under domestication’ of upland cotton Gossypium hirsutum L. examined using DNA fingerprinting. Theor Appl Genet 103:547–554

    Article  CAS  Google Scholar 

  • Jenkins JN, Wu J, McCarty JC, Saha S, Gutierrez OA, Hayes R, Stelly DM (2007) Genetic effects of thirteen Gossypium barbadense L. chromosome substitution lines in top crosses with Upland cotton cultivars: II. Fiber quality traits. Crop Sci 47:561–570

    Article  Google Scholar 

  • Johnson RM, Downer RG, Bradow JM, Bauer PJ, Sadler EJ (2002) Variability in cotton fiber yield, fiber quality, and soil properties in a southeastern coastal plain. Agron J 94:1305–1316. https://doi.org/10.2134/agronj2002.1305

    Article  Google Scholar 

  • Kakani VG, Reddy KR, Koti S, Wallace TP, Prasad PVV, Reddy VR, Zhao D (2005) Comparison of pollen and physiological characters of cotton cultivars as screening tools for high temperature tolerance. Ann Bot 96:59–67

    Article  CAS  Google Scholar 

  • Kaplan F, Kopka J, Haskell DW, Zhao W, Schiller KC, Gatzke N, Sung DY, Guy CL (2004) Exploring the temperature–stress metabolome of Arabidopsis. Plant Physiol 136:4159–4168

    Article  CAS  Google Scholar 

  • Kargiotidou A, Kappas I, Tsaftaris A, Galanopoulou D, Farmaki T (2010) Cold acclimation and low temperature resistance in cotton: Gossypium hirsutum phospholipase Dα isoforms are differentially regulated by temperature and light. J Exp Bot 61:2991–3001

    Article  CAS  Google Scholar 

  • Kornerova M, Hola D (1999) The effect of low growth temperature on hill reaction and photosystem 1 activities and pigment contents in maize inbred lines and their F1 hybrids. Photosynthetica 37:477–488

    Article  CAS  Google Scholar 

  • Lee JA, Fang DD (2015) Cotton as a world crop: origin, history, and current status. In: Lee LA, Fang DD (eds) Cotton, agronomy monograph no. 57. ASA, CSSA, and ASSA, Madion, pp 1–23

    Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Loka DA, Oosterhuis DM (2012) Water stress and reproductive development in cotton. In: Oosterhuis DM, Cothren JT (eds) Flowering and fruiting in cotton. The Cotton Foundation, Candova, pp 51–58

    Google Scholar 

  • Lokhande S, Reddy KR (2014) Reproductive and fiber quality responses of Upland cotton to moisture deficiency. Agron J 106:1060–1069

    Article  Google Scholar 

  • Lu Z, Radin JW, Turcotte EL, Percy R, Zeiger E (1994) High yields in advanced lines of Pima cotton are associated with higher stomatal conductance, reduced leaf area and lower leaf temperature. Physiol Plant 92:266–272

    Article  CAS  Google Scholar 

  • Lu Z, Chen J, Percy RG, Zeiger E (1998a) Photosynthetic rate, stomatal conductance, and leaf area in two cotton species (Gossypium barbadense and Gossypium hirsutum) and their relation with heat resistance and yield. Aust J Plant Physiol 24:693–700

    Article  Google Scholar 

  • Lu Z, Percy RG, Zeiger E (1998b) Stomatal conductance predicts yields in irrigated Pima cotton and bread wheat grown at high temperatures. J Exp Bot 49:453–460

    Article  Google Scholar 

  • Lynch JP (2005) Root architecture and nutrient acquisition. In: BassiriRad H (ed) Nutrient acquisition by plants. An ecological perspective. Springer, Berlin, pp 147–183

    Chapter  Google Scholar 

  • Ma FY, Li MC, Yang JR, Ji XJ, Shentu XD, Tao HJ (2002) A study of effect of water deficit of three periods during cotton anthesis on canopy apparent photosynthesis and WUE. Sci Agric Sin 12:1467–1472 (in Chinese, with English abstract)

    Google Scholar 

  • McKinion JM, Hodges HF (1985) Automated system for measurement of evapotranspiration from closed environmental growth chambers. Trans ASAE 28:1825–1828

    Article  Google Scholar 

  • McMichael BL, Upchurch DR, Burke JJ (1996) Soil temperature derived prediction of root density in cotton. Environ Exp Bot 36:303–312

    Article  Google Scholar 

  • McMichael BL, Oosterhuis DM, Zak JC, Beyrouty CA (2010) Growth and development of root systems. In: Stewart et al. JM (eds) Physiology of cotton. Springer, New York, pp 57–71

    Chapter  Google Scholar 

  • Morrow MR, Krieg DR (1990) Cotton management strategies for a short growing season environment: water–nitrogen considerations. Agron J 82:52–56. https://doi.org/10.2134/agronj1990.00021962008200010011x

    Article  Google Scholar 

  • Murray FW (1967) On the computation of saturation vapor pressure. J Appl Meteorol 6:203–204

    Article  CAS  Google Scholar 

  • Nie GY, Baker NR (1991) Modifications to the thylakoid composition during development of maize leaves at low temperatures. Plant Physiol 95:184–191

    Article  CAS  Google Scholar 

  • Onder D, Akiscan Y, Onder S, Mert M (2010) Effect of different irrigation water level on cotton yield and yield components. Afr J Biotech 8:1536–1544

    Google Scholar 

  • Pembleton KG, Donaghy DJ, Volenec JJ, Smith RS, Rawnsley RP (2010a) Yield, yield components and shoot morphology of four contrasting alfalfa (Medicago sativa) cultivars grown in three cool temperate environments. Crop Past Sci 61:503–511

    Article  Google Scholar 

  • Pembleton KG, Smith RS, Rawnsley RP, Donaghy DJ, Humphries AW (2010b) Genotype by environment interactions of alfalfa (Medicago sativa L.) in a cool temperate climate. Crop Past Sci 61:493–502

    Article  Google Scholar 

  • Percival AE, Wendel JF, Stewart JM (1999) Taxonomy and germplasm resources. In: Smith WC, Cothren JT (eds) Cotton origin, history, technology and production. Wiley, New York, pp 33–63

    Google Scholar 

  • Pettigrew WT (2004) Physiological consequences of moisture deficit stress in cotton. Crop Sci 44:1265–1272

    Article  Google Scholar 

  • Reddy KR, Hodges HF, Reddy VR (1992a) Temperature effects on cotton fruit retention. Agron J 84:26–30

    Article  Google Scholar 

  • Reddy KR, Reddy VR, Hodges HF (1992b) Effects of temperature on early season cotton growth and development. Agron J 84:229–237

    Article  Google Scholar 

  • Reddy KR, Hodges HF, McKinion JM (1993) A temperature model for cotton phenology. Biotronics 22:47–59

    Google Scholar 

  • Reddy KR, Hodges HF, McKinion JM (1995) Carbon dioxide and temperature effects on Pima cotton development. Agron J 87:820–826

    Article  Google Scholar 

  • Reddy KR, Hodges HF, McKinion JM (1997a) Crop modeling and applications: a cotton example. Adv Agron 59:225–290

    Article  Google Scholar 

  • Reddy VR, Reddy KR, Wang Z (1997b) Temperature and aldicarb effects on cotton root growth and development. Biotronics 26:1–11

    Google Scholar 

  • Reddy VR, Wang Z, Reddy KR (1997c) Growth responses of cotton to aldicarb and temperature. Environ Exp Bot 38:39–48

    Article  CAS  Google Scholar 

  • Reddy KR, Robana RR, Hodges HF, Liu XJ, McKinion JM (1998) Influence of atmospheric CO2 and temperature on cotton growth and leaf characteristics. Environ Exp Bot 39:117–129

    Article  Google Scholar 

  • Reddy KR, Read JJ, Baker JT, McKinion JM, Tarpley L, Hodges HF, Reddy VR (2001) Soil–Plant–Atmosphere-Research (SPAR) facility—a tool for plant research and modeling. Biotronics 30:27–50

    Google Scholar 

  • Reddy KR, Prasad PVV, Kakani VG (2005) Crop responses to elevated carbon dioxide and interactions with temperature. In: Tuba Z (ed) Ecological responses and adaptations of crops to rising atmospheric carbon dioxide. Food Products Press, Binghamton, pp 157–191

    Google Scholar 

  • Reddy KR, Brand D, Wijewardana C, Gao W (2017) Temperature effects on cotton seedling emergence, growth, and development. Agron J 109:1379–1387

    Article  Google Scholar 

  • Rizhsky L, Liang HJ, Shuman J, Shulaev V, Davletova S, Mittler R (2004) When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 134:1683–1696

    Article  CAS  Google Scholar 

  • Rosolem CA, Assis JS, Santiago AD (1994) Root growth and mineral nutrition of corn hybrids as affected by phosphorus and lime 1. Commun Soil Sci Plant Anal 25:2491–2499

    Article  CAS  Google Scholar 

  • Roussopoulos D, Liakatas A, Whittington WJ (1998) Controlled-temperature effects on cotton growth and development. J Agric Sci 130:451–462

    Article  Google Scholar 

  • Saha S, Wu J, Jenkins JN, McCarty JC Jr, Gutierrez OA, Stelly DM, Percy RG, Raska DA (2004) Effect of chromosome substitutions from Gossypium barbadense L. 3-79 into G. hirsutum L. TM-1 on agronomic and fiber traits. J Cotton Sci 8:162–169

    CAS  Google Scholar 

  • Saha S, Jenkins JN, Wu J, McCarty JC, Stelly DM (2008) Genetic analysis of agronomic and fiber traits using four interspecific chromosome substitution lines in cotton. Plant Breed 127:612–618

    Article  Google Scholar 

  • Saha S, Wu J, Jenkins JN, McCarty JC Jr, Hayes RW, Stelly DM (2010) Genetic dissection of chromosome substitution lines of cotton to discover novel Gossypium barbadense L. alleles for improvement of agronomic traits. J Theor Appl Genet 120:1193–1205

    Article  Google Scholar 

  • Saha S, Wu J, Jenkins JN, McCarty JC, Hayes R, Stelly DM (2013) Interspecific chromosomal effects on agronomic traits in Gossypium hirsutum by AD analysis using intermated G. barbadense chromosome substitution lines. Theor Appl Genet 126:109–117

    Article  CAS  Google Scholar 

  • Saha S, Stelly DM, Makamov AK, Ayubov MS, Raska D, Gutiérrez OA, Manchali S, Jenkins JN, Deng D, Abdurakhmonov IY (2015) Molecular confirmation of Gossypium hirsutum chromosome substitution lines. Euphytica 205:459–473

    Article  CAS  Google Scholar 

  • Saha S, Jenkins JN, McCarty JC, Hayes RW, Stelly DM, Campbell BT (2016) Four chromosome-specific (Gossypium barbadense chromosome 5sh) Upland cotton RILs with improved elongation. J Plant Regist 11:165–167

    Article  Google Scholar 

  • Senchina DS, Alvarez I, Cronn RC, Liu B, Paterson AH, Rong J, Noyes RD, Wing RA, Wilkins TA, Wendel JF (2003) Rate variation among nuclear genes and the age of polyploidy in Gossypium. Mol Biol Evol 20:633–643

    Article  CAS  Google Scholar 

  • Singh RP, Prasad PVV, Sunita K, Giri SN, Reddy KR (2007) Influence of high temperature and breeding for heat tolerance in cotton: a review. Adv Agron 93:313–385

    Article  CAS  Google Scholar 

  • Singh B, Borvell E, Wijewardana C, Wallace T, Chastain C, Reddy KR (2018) Assessing morphological characteristics of elite cotton lines from different breeding programmes for low temperature and drought tolerance. Euphytica. https://doi.org/10.1111/jac.12276

    Article  Google Scholar 

  • Snowden C, Ritchie G, Cave J, Keeling W, Rajan N (2013) Multiple irrigation levels affect boll distribution, yield, and fiber micronaire in cotton. Agron J 105:1536–1544. https://doi.org/10.2134/agronj2013.0084

    Article  Google Scholar 

  • Stelly DM, Saha S, Raska DA, Jenkins JN, McCarty JC, Gutierrez OA (2005) Registration of 17 Upland (Gossypium hirsutum) germplasm lines disomic for different G. barbadense chromosome or arm substitutions. Crop Sci 45:2663–2665

    Article  Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066

    Article  CAS  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Ann Rev Plant Physiol Plant Mol Biol 50:571–599

    Article  CAS  Google Scholar 

  • Timlin D, Fleisher D, Kim SH, Reddy VR, Baker JT (2007) Evapotranspiration measurement in controlled environment chambers. Agron J 99:166–173

    Article  CAS  Google Scholar 

  • Udall JA, Wendel JF (2006) Polyploidy and crop improvement. Crop Sci 46:S3–S14

    Article  Google Scholar 

  • Ullah A, Sun H, Yang X, Zhang X (2017) Drought coping strategies in cotton: increased crop per drop. Plant Biotech J 15:271–284. https://doi.org/10.1111/pbi.12688

    Article  CAS  Google Scholar 

  • Upchurch DR, Mahan JR (1988) Maintenance of constant leaf temperature by plants. II. Experimental observations in cotton. Environ Exp Bot 28:359–366

    Article  Google Scholar 

  • Urano K, Maruyama K, Ogata Y, Morishita Y, Takeda M, Sakurai N, Suzuki H, Saito K, Shibata D, Kobayashi M, YamaguchiShinozaki K, Shinozaki K (2009) Characterization of the ABA-regulated global responses to dehydration in Arabidopsis by metabolomics. Plant J 57:1065–1078

    Article  CAS  Google Scholar 

  • Usadel B, Blasing OE, Gibon Y, Poree F, Hohne M, Gunter M, Trethewey R, Kamlage B, Poorter H, Stitt M (2008) Multilevel genomic analysis of the response of transcripts, enzyme activities and metabolites in Arabidopsis rosettes to a progressive decrease of temperature in the non-freezing range. Plant Cell Environ 31:518–547

    Article  CAS  Google Scholar 

  • Van Esbroeck GA, Bowman DT, May OL, Calhoun DS (1999) Genetic similarity indices for ancestral cotton cultivars and their impact on genetic diversity estimates of modern cultivars. Crop Sci 39:323–328

    Google Scholar 

  • Wang R, Ji S, Zhang P, Meng Y, Wang Y, Chen B, Zhou Z (2016) Drought effects on cotton yield and fiber quality on different fruiting branches. Crop Sci 56:1265–1276

    Article  CAS  Google Scholar 

  • Wendel JF, Cronn RC (2003) Polyploidy and the evolutionary history of cotton. Adv Agron 78:139–186

    Article  Google Scholar 

  • Wijewardana C, Hock DL, Henry WB, Reddy KR (2015) Screening corn hybrids for cold tolerance using morphological traits for early-season seeding. Crop Sci 55:851–867

    Article  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Ann Rev Plant Biol 53:247–273

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the USDA NIFA projects (2014-34263-22038, G-89701-1 and 2015-34263-24070, G-14901-1), Texas A&M Agrilife Research, and the Cotton Incorporated, Inc., USA. We would like to thank fellow graduate students for their help in taking measurements and processing samples in the lab. This study is a contribution of the Department of Plant and Soil Sciences, Mississippi State University, and the Mississippi Agricultural and Forestry Experiment Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Raja Reddy.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awasthi, A., Reddy, K.R., Saha, S. et al. Morph-physiological responses of cotton interspecific chromosome substitution lines to low temperature and drought stresses. Euphytica 214, 218 (2018). https://doi.org/10.1007/s10681-018-2300-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-018-2300-6

Keywords

Navigation