, 214:215 | Cite as

Analysis of population structure and genetic diversity reveals gene flow and geographic patterns in cultivated rice (O. sativa and O. glaberrima) in West Africa

  • Octaviano Igor Yelome
  • Kris Audenaert
  • Sofie LandschootEmail author
  • Alexandre Dansi
  • Wouter Vanhove
  • Drissa Silue
  • Patrick Van Damme
  • Geert Haesaert


To fully exploit the diversity in African rice germplasm and to broaden the gene pool reliable information on the population genetic diversity and phenotypic characteristics is a prerequisite. In this paper, the population structure and genetic diversity of 42 cultivated African rice (Oryza spp.) accessions originating from West Africa (Benin, Mali and Nigeria, Liberia etc.) were investigated using 20 simple sequence repeats (SSR) and 77 amplified fragment length polymorphisms (AFLP). Additionally, field trials were set up to gain insight into phenotypic characteristics that differentiate the genetic populations among rice accessions. The analysis revealed considerably high polymorphisms for SSR markers (PIC mean = 0.78) in the germplasm studied. A significant association was found between AFLP markers and geographic origin of rice accessions (R = 0.72). Germplasm structure showed that Oryza sativa accessions were not totally isolated from Oryza glaberrima accessions. The results allowed identification of five O. glaberrima accessions which grouped together with O. sativa accessions, sharing common alleles of 18 loci out of the 20 SSR markers analyzed. Population structure analysis revealed existence of a gene flow between O. sativa and O. glaberrima rice accessions which can be used to combine several interesting traits in breeding programs. Further studies are needed to clarify the contributions of this gene flow to valuable traits such as abiotic and biotic stresses including disease resistance.


Amplified fragment length polymorphism Genetic diversity Gene flow Rice Simple sequence repeats 



Funding of this Research work by the Monsanto’s Beachell-Borlaug International Scholars Program (MBBIS) and the Flemish Fund for Scientific Research (BOF) with support of AfricaRice. Special thanks to the AfricaRice genebank for providing seed and the related information.

Authors’ contributions

OIY carried out the field works, the genotyping, data analysis and drafted the manuscript. KA participated in project design, genotyping, data analysis and revised the manuscript. SL participated in statistical analysis of data and revised the manuscript. DS, AD, WV, PVD, and GH participated in project design, data analysis and revised the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10681_2018_2285_MOESM1_ESM.docx (125 kb)
Supplementary material 1 (DOCX 125 kb)


  1. Agrama H, Yan WG, Lee F, Fjellstrom R et al (2009) Genetic assessment of a mini-core subset developed from the USDA Rice Genebank. Crop Sci 49:1336–1346CrossRefGoogle Scholar
  2. Ammiraju JS, Fan C, Yu Y, Song X, Cranston KA, Pontaroli AC, Lu F, Sanyal A, Jiang N, Rambo T et al (2010) Spatio-temporal patterns of genome evolution in allotetraploid species of the genus Oryza. Plant J. 63:430–442CrossRefGoogle Scholar
  3. Angladette A (1966) Le riz. Techniques agricoles et production tropicale. Maison neuve et La rose Ed., Paris (Ve), pp 609–669Google Scholar
  4. Balloux F, Moulin NL (2002) The estimation of population differentiation with microsatellite markers. Mol Ecol 11:155–165CrossRefGoogle Scholar
  5. Barry MB, Pham JL, Noyer AJL, Billot AC, Courtois AB, Ahmad AN (2007) Genetic diversity of the two cultivated rice species (O. sativa and O. glaberrima) in maritime Guinea. Evidence for interspecifc recombination. Euphytica 154:127–137CrossRefGoogle Scholar
  6. Bezançon G, Diallo S (2006) Oryza glaberrima Steud. Record from Protabase. In: Brink M, Belay G (eds) PROTA (Plant Resources of Tropical Africa), Wageningen.
  7. Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331PubMedPubMedCentralGoogle Scholar
  8. Chang TT (1976) The origin, evolution, cultivation, dissemination and diversification of Asian and African rices. Euphytica 25:425–441CrossRefGoogle Scholar
  9. Chen C, He W, Nassirou TY, Nsabiyumva A, Dong X, Adedze YMN, Jin D (2017) Molecular characterization and genetic diversity of different genotypes of Oryza sativa and Oryza glaberrima. Electron J Biotechnol 30:48–57CrossRefGoogle Scholar
  10. Diniz-Filho JAF, Soares TN, Lima JS, Dobrovolski R, Landeiro VL, Telles MPC, Rangel TF, Bini LM (2013) Mantel test in population genetics. Genet Mol Biol 36:475–485CrossRefGoogle Scholar
  11. Dramé KN, Sanchez I, Gregorio G, Ndjiondjop MN (2011) Suitability of a selected set of simple sequence repeats (SSR) markers for multiplexing and rapid molecular characterization of African rice (Oryza glaberrima Steud). Afr J Biotechnol 10:6675–6685Google Scholar
  12. Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361CrossRefGoogle Scholar
  13. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefGoogle Scholar
  14. Futakuchi K, Sié M (2009) Better exploitation of African Rice (Oryza glaberrima Steud.) in varietal development for Resource-Poor Farmers in West and Central Africa. Agric J 4:96–102Google Scholar
  15. Ge S, Sang T, Lu BR, Hong DY (2001) Phylogeny of the genus Oryza as revealed by molecular approaches. In: Khush GS, Brar DS, Hardy B (eds) Rice genetics IV proceedings of the fourth international rice genetics symposium. IRRI, Los Banos, The Philippines, pp 89–105Google Scholar
  16. Idrissi O, Udupa SM, Houasli C, De Keyser E, Van Damme P, De Riek J (2015) Genetic diversity analysis of Moroccan lentil (Lens culinaris Medik.) landraces using simple sequence repeat and amplified fragment length polymorphisms reveals functional adaptation towards agro-environmental origins. Plant Breed 134:322–332CrossRefGoogle Scholar
  17. Jones MP, Dingkuhn M, Aluko GK, Semon M (1997) Interspecific Oryza sativa x O. glaberrima Steud. Progenies in upland rice improvement. Euphytica 92:237–246CrossRefGoogle Scholar
  18. Jusu MS (1999) Management of genetic variability in rice (Oryza sativa L. and O. glaberrima Steud.) by breeders and farmers in Sierra Leone. Ph.D. thesis. Wageningen University and Research Centre, Wageningen, The NetherlandsGoogle Scholar
  19. Kalinowski ST (2002) How many alleles per locus should be used to estimate genetic distances? Heredity 88:62–65CrossRefGoogle Scholar
  20. Ko HL, Cowan DC, Henry RJ, Graham GC, Blakeney AB, Lewin LG (1994) Random amplified polymorphic DNA analysis of Australian rice (Oryza sativa L.) varieties. Euphytica 80:179–189CrossRefGoogle Scholar
  21. Kubo M, Purevdoj M (2004) The future of rice production and consumption. JFDRS 35:128–142Google Scholar
  22. Linares OF (2002) African rice (Oryza glaberrima): history and future potential. Proc Natl Acad Sci USA 99:16360–16365CrossRefGoogle Scholar
  23. Mantel NA (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  24. McCouch SR, Teytelman L, Xu Y, Lobos KB, Clare K, Walton M, Fu B, Maghirang R, Li Z, Xing Y et al (2002) Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res 9:199–207CrossRefGoogle Scholar
  25. Ming H, Fang-min X, Li-yun C, Xiang-qian Z, Jojee L, Madonna D (2010) Comparative analysis of genetic diversity and structure in rice using ILP and SSR markers. Rice Sci 17:257–268CrossRefGoogle Scholar
  26. Mokuwa A, Nuijten E, Okry F, Teeken B, Maat H et al (2013) Robustness and strategies of adaptation among farmer varieties of african rice (Oryza glaberrima) and Asian rice (Oryza sativa) across West Africa. PLoS ONE 8(3):e34801. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with non-repetitive DNA in plant genomes. Nat Genet 30:194–200CrossRefGoogle Scholar
  28. National Research Council (1996) Lost crops of Africa. Volume 1: Grains. National Academy Press, Washington, p 380Google Scholar
  29. Nisar M, Ghafoor A, Ahmad H, Khan MR, Qureshi AS, Ali H, Islam M (2008) Evaluation of genetic diversity of pea germplasm through phenotypic trait analysis. Pak J Bot 40:2081–2086Google Scholar
  30. North A, Pennanen J, Ovaskainen O, Laine AL (2011) Local adaptation in a changing world: the roles of gene-flow, mutation, and sexual reproduction. Evolution 65:79–89CrossRefGoogle Scholar
  31. Nuijten E, Van Treuren R, Struik PC, Mokuwa A, Okry F, Teeken B, Richards P (2009) Evidence for the emergence of new rice types of interspecific hybrid origin in West African farmers’ fields. PLoS ONE 4(10):e7335. CrossRefPubMedPubMedCentralGoogle Scholar
  32. Pham JL (1992) Evaluation des ressources génétiques des riz cultivés en Afrique par hybridation intra et interspécifique. Thèse Docteur et sciences, Université de Paris XI ORSAY (France), p 236Google Scholar
  33. Portéres R (1962) Berceaux agricoles primaires sur le continent Africain. J Afr Hist 3:195–210CrossRefGoogle Scholar
  34. Portères R (1956) Taxonomie Agrobotanique des Riz cultivés O. sativa Linne. et O. glaberrima Steudel. J Agric Trop Bot Appl 3:341–384Google Scholar
  35. Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:225–238CrossRefGoogle Scholar
  36. Pritchard J, Stephens M, Rosenberg N, Donnelly P (2000) Association mapping in structured populations. Am J Hum Genet 67:170–181CrossRefGoogle Scholar
  37. Roy Choudhury D, Singh N, Singh AK, Kumar S, Srinivasan K et al (2014) Analysis of genetic diversity and population structure of rice germplasm from north-eastern region of India and development of a core germplasm set. PLoS ONE 9(11):e113094. CrossRefPubMedPubMedCentralGoogle Scholar
  38. Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal spacer length polymorphisms in barley: mendelian inheritance, chromosomal location and population dynamics. Proc Natl Acad Sci USA 83:1757–1761Google Scholar
  39. Saghai-Maroof MA, Yang GP, Biyashev RM, Maughan PJ, Zhang Q (1996) Analysis of the barley and rice genomes by comparative RFLP linkage mapping. Theor Appl Genet 92:541–551CrossRefGoogle Scholar
  40. Salem KFM, Sallam A (2016) Analysis of population structure and genetic diversity of Egyptian and exotic rice (Oryza sativa L.) genotypes. C R Biol 339:1–9CrossRefGoogle Scholar
  41. Sanchez PL, Wing RA, Brar DS (2013) The wild relative of rice: genomes and genomics. In: Zhang Q, Wing RA (eds) Genetics and genomics of rice, plant genetics and genomics. Springer, New York, pp 9–26CrossRefGoogle Scholar
  42. Sano Y (1989) The direction of pollen flow between two co-occurring rice species, Oryza sativa and O. glaberrima. Heredity 63:353–357CrossRefGoogle Scholar
  43. Sarla NM, Swamy BPM (2005) Oryza glaberrima: a source for the improvement of Oryza sativa. Curr Sci 89:955–963Google Scholar
  44. Second G (1982) Origin of the genic diversity of cultivated rice (Oryza spp.): study of the polymorphism scored at 40 isozyme loci. Jpn J Genet 57:25–57CrossRefGoogle Scholar
  45. Semon M, Nielsen R, Jones MP, McCouch SR (2005) The population structure of African cultivated rice Oryza glaberrima (Steud.): evidence for elevated levels of linkage disequilibrium caused by admixture with O. sativa and ecological adaptation. Genetics 169:1639–1647CrossRefGoogle Scholar
  46. Sexton JP, Strauss SY, Rice KJ (2011) Gene flow increases fitness at the warm edge of a species’ range. Proc Natl Acad Sci USA 108:11704–11709CrossRefGoogle Scholar
  47. Shan X, Blake TK, Talbert LE (1999) Conversion of AFLP markers to sequence-specific PCR markers in barley and wheat. Theor Appl Genet 98:1072–1078CrossRefGoogle Scholar
  48. Sié M, Ogunbayo SA, Dakouo D, Sanou I, Dembélé Y, N’dri B, Dramé KN, Sanni KA, Toulou B, Glele RK (2010) Evaluation of intra and interspecific rice varieties adapted to valley bottom conditions in Burkina Faso. Afr J Plant Sci 4:308–318Google Scholar
  49. Sié M, Sanni K, Futakuchi K, Manneh B, Mandé S, Vodouhé R, Dogbe S, Dramé KN, Ogunbayo A, Ndjiondjop MN, Traoré K (2012) Towards a rational use of African rice (Oryza glaberrima Steud.) for breeding in Sub-Saharan Africa. Genes Genomes Genom 6(Special Issue 1):1–7Google Scholar
  50. Slatkin M (1985) Rare alleles as indicators of gene flow. Evolution 39:53–65CrossRefGoogle Scholar
  51. Tarang A, Gashti AB (2016) The power of microsatellite markers and AFLPs in revealing the genetic diversity of Hashemi aromatic rice from Iran. J Integr Agric 15:1186–1197CrossRefGoogle Scholar
  52. Teeken B, Nuijten E, Temudo MP, Okry F, Mokuwa A, Struik PC, Richards P (2012) Maintaining or abandoning African rice: lessons for understanding processes of seed innovation. Hum Ecol 40:879–892. CrossRefGoogle Scholar
  53. Temnykh S, Park WD, Ayres N, Cartinhour S, Hauck N, Lipovich L, Cho YG, Ishii T, McCouch SR (2000) Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theor Appl Genet 100:697–712CrossRefGoogle Scholar
  54. USDA-ARS (2013) National Genetic Resources Program. Germplasm Resources Information Network - (GRIN) [Online Database]. National Germplasm Resources Laboratory, Beltsville, MA. Accessed 05th March 2018
  55. Vaughan DA (1994) The wild relatives of rice: a genetic resources handbook. International Rice Research Institute, Manila, p 137Google Scholar
  56. Vieira MLC, Santini L, Diniz AL, Munhoz CF (2016) Microsatellite markers: what they mean and why they are so useful. Genet Mol Biol 39:312–328CrossRefGoogle Scholar
  57. Vos P, Hogers R, Bleeker M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucl Acids Res 23:4407–4414CrossRefGoogle Scholar
  58. Wambugu PW, Furtado A, Waters DL, Nyamongo DO, Henry R (2013) Conservation and utilization of African Oryza genetic resources. Rice 6:29CrossRefGoogle Scholar
  59. Wang MH et al (2014) The genome sequence of African rice (Oryza glaberrima) and evidence for independent domestication. Nat Genet 46:982–988CrossRefGoogle Scholar
  60. Wright S (1951) The genetical structure of populations. Ann Hum Genet 15:323–354Google Scholar
  61. Wu J, Tanksley SD (1993) Abundance, polymorphism and genetic mapping of microsatellites in rice. Mol Gen Genet 241:225CrossRefGoogle Scholar
  62. Yelome OI, Audenaert K, Landschoot S, Dansi A, Vanhove W, Silue D, Van Damme P, Haesaert G (2018) Exploring genetic diversity and disease response of cultivated rice accessions against Pyricularia oryzae under rainfed upland conditions in Benin. Genet Resour Crop Evol 65:1615–1624CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Octaviano Igor Yelome
    • 1
  • Kris Audenaert
    • 1
  • Sofie Landschoot
    • 1
    Email author return OK on get
  • Alexandre Dansi
    • 2
  • Wouter Vanhove
    • 1
  • Drissa Silue
    • 3
    • 4
  • Patrick Van Damme
    • 1
    • 5
  • Geert Haesaert
    • 1
  1. 1.Department of Plants and Crops, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
  2. 2.Faculté des Sciences et Techniques de Dassa, Laboratoire de Biotechnologie, Ressources Génétiques et Amélioration des Espèces Animales et Végétales (BIORAVE)Université d’AbomeyAbomey-CalaviBenin
  3. 3.AfricaRice CenterCotonouBenin
  4. 4.AfricaRice CenterBouake 01Côte d’Ivoire
  5. 5.Faculty of Tropical AgriSciencesCzech University of Life Sciences PraguePrague 6 – SuchdolCzech Republic

Personalised recommendations