Skip to main content
Log in

Molecular breeding for resistance to black rot [Xanthomonas campestris pv. campestris (Pammel) Dowson] in Brassicas: recent advances

  • Review
  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

The Brassicas are affected by several diseases, of which black rot, Xanthomonas campestris pv. campestris (Pam.) Dowson (Xcc), is one of the most widespread and devastating worldwide. The black rot bacteria causes systemic infection in the susceptible plants and penetrate the plants through the hydathodes or wounds. Typical disease symptoms are ‘V’ shaped necrotic lesions appearing from the leaf margins with blackened veins. Periodic outbreaks of the black rot pathogen have occurred worldwide, especially in the continental regions, where high temperatures and humidity favor the incidence of disease occurrence causing huge yield loss. The challenge to control the losses in vegetable brassicas production is made more difficult by the adverse climatic changes and evolution of new pathogenic races. The development of black rot resistant hybrids/varieties is the most reliable long term practical solution for effective disease control. Identification of new resistant genetic resources, tightly linked markers with resistance loci and QTL mapping would facilitate the breeding programme for black rot resistance. Information regarding genetics of resistance and mapping of resistance genes/QTLs will accelerate the marker assisted resistance breeding in brassica crops against Xcc. In future we need to identify the race specific candidate genes for and their validation through transgenics and gene expression. Moreover, it is imperative to identify functional markers for resistance genes through identification of R gene families and their relationship with resistance expression. This comprehensive review will help the researchers working in this area to understand the dynamics of black resistance breeding and to formulate future breeding strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Afrin KS, Rahim MA, Park J-I, Natarajan S, Kim H-T, Nou I-S (2018) Identification of NBS-encoding genes linked to black rot resistance in cabbage (Brassica oleracea var. capitata). Mol Biol Rep 45:773–785

    CAS  PubMed  Google Scholar 

  • Akhtar J, Singh B, Kandan A, Kumar P, Maurya AK, Dubey SC (2017) Interception of pathogens during quarantine processing: an effort towards safe import of oilseed and vegetable Brassicas germplasm in India. J Oilseed Brassica 8:120–130

    Google Scholar 

  • Andrade AE, Silva LP, Pereira JL, Norohna EF Jr, Reis FB Jr, Bloch C, dos Santos MF, Domont GB, Franco OL, Mehta A (2008) In vivo proteomeanalysis of Xanthomonas campestris pv. campestris in the interactionwith the host plant Brassica oleracea. FEMS Microbiol Lett 281:167–174

    CAS  PubMed  Google Scholar 

  • Babula D, Kaczmarck M, Barakat A, Delseny M, Quiros CF, Sadowski J (2003) Chromosomal mapping of Brassica oleracea based on Arabidopsis ESTs: complexity of comparative mapping. Mol Genet Genom 268:656–665

    CAS  Google Scholar 

  • Bain DC (1952) Reaction of Brassica seedlings to black rot. Phytopathology 42:1456–1459

    Google Scholar 

  • Barton NH (2001) The role of hybridization in evolution. Mol Ecol 10:551–568

    CAS  PubMed  Google Scholar 

  • Berg T, Tesoriero L, Hailstones DL (2005) PCR-based detection of Xanthomonas campestris pathovars in Brassica seed. Phytopathology 54:416–427

    CAS  Google Scholar 

  • Camargo LEA, Williams PH, Osborn TC (1995) Mapping of quantitative trait loci controlling resistance of Brassica oleracea to Xanthomonas campestris pv. campetris in the field and greenhouse. Phytopathology 85:1296–1300

    Google Scholar 

  • Chen H, Xie W, He H, Yu H, Chen W, Li J, Yu R, Yao Y, Zhang W, He Y, Tang X, Zhou F (2014) A high-density SNP genotyping array for rice biology and molecular breeding. Mol Plant 7:541–553

    CAS  PubMed  Google Scholar 

  • Cheng F, Wu J, Cai C, Fu F, Liang J, Borm T, Zhuang M, Zhang Y, Zhang F, Bonnema G, Wang X (2016) Genome resequencing and comparative variome analysis in a Brassica rapa and Brassica oleracea collection. Sci Data 3:160119

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhary BR, Joshi P, Ramarao S (2000) Interspecific hybridization between Brassica carinata and Brassica rapa. Plant Breed 119:417–420

    Google Scholar 

  • Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc Lond B Biol Sci 363:557–572

    CAS  PubMed  Google Scholar 

  • Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196

    CAS  Google Scholar 

  • Cook AA, Walker JC, Larson RH (1952) Studies on the disease cycle of black rot of crucifers. Phytopathology 42:162–167

    Google Scholar 

  • De Bernonville T, Albenne C, Arlat M, Hoffmann L, Lauber E, Jamet E (2014) Xylem sap proteomics. In: Jorrin-Novo JV, Komatsu S, Weckwerth W, Wienkoop S (eds) Plant proteomics. Humana Press, NewYork, pp 391–405. https://doi.org/10.1007/978-1-62703-631-3_28

    Chapter  Google Scholar 

  • Dey SS, Sharma K, Dey RB, Kumar SGM, Singh D, Kumar R, Parkash C (2015) Inter specific hybridization (Brassica carinata × Brassica oleracea) for introgression of black rot resistance genes into Indian cauliflower (B. oleracea var. botrytis L.). Euphytica 204:149–162

    Google Scholar 

  • Dhar S, Singh D (2014) Performance of cauliflower genotypes for yield and resistance against black rot (Xanthomonas campestris pv. campestris). Indian J Hort 71:197–201

    Google Scholar 

  • Diatchenko L, Lau YFC, Campbell AP, Chenchik A, Moqadam F, Huang B, Lukyanov K, Gurskaya K, Sverdlov E, Siebert PD (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA 93:6025–6030

    CAS  PubMed  Google Scholar 

  • Dickson MD, Hunter JE (1987) Inheritance of resistance in cabbage seedlings to black rot. HortScience 22:108–109

    Google Scholar 

  • Dong W, Wu D, Li G, Wu D, Wang Z (2018) Next-generation sequencing from bulk segregant analysis identifies a dwarfism gene in watermelon. Sci Rep 8:2908. https://doi.org/10.1038/s41598-018-21293-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doullah MAU, Mohsin GM, Ishikawa K, Hori H, Okazaki K (2011) Construction of a linkage map and QTL analysis for black rot resistance in Brassica oleracea L. Int J Nat Sci 1:1–6

    Google Scholar 

  • Fargier E, Manceau C (2007) Pathogenicity assays restrict the species Xanthomonas campestris into three pathovars and reveal nine races within X. campestris pv. campestris. Plant Pathol 56:805–818

    Google Scholar 

  • Garman H (1894) A bacterial disease of cabbage. Ky Agric Exp Stn Rep 3:43–46

    Google Scholar 

  • Glaszmann JC, Kilian B, Upadhyaya HD, Varshney RK (2010) Accessing genetic diversity for crop improvement. Curr Opin Plant Biol 13:1–7

    Google Scholar 

  • Graves PR, Haystead TAJ (2002) Molecular biologist’s guide to proteomics. Microbiol Mol Biol Rev 66:39–63

    CAS  PubMed  PubMed Central  Google Scholar 

  • Griffiths PD, Roe C (2005) Response of Brassica oleracea var. capitata to wound and spray inoculations with Xanthomonas campestris pv. campestris. HortScience 40:47–49

    Google Scholar 

  • Griffiths PD, Marek LF, Robertson LD (2009) Identification of crucifer accessions from the NC-7 and NE-9 plant introduction collections that are resistant to black rot (Xanthomonas campestris pv. campestris) races 1 and 4. HortScience 44:284–288

    Google Scholar 

  • Guo H, Dickson MH, Hunter JE (1991) Brassica napus sources of resistance to black rot in crucifers and inheritance of resistance. HortScience 26:1545–1547

    Google Scholar 

  • Guo W-L, Chen R-G, Gong ZH, Yin YX, Li D-W (2013) Suppression subtractive hybridization analysis of genes regulated by application of exogenous abscisic acid in pepper plant (Capsicum annuum L.) leaves under chilling stress. PLoS ONE 8:e66667. https://doi.org/10.1371/journal.pone.0066667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen LN, Earle ED (1995) Transfer of resistance to Xanthomonas campestris pv. campestris into Brassica oleracea L. by protoplast fusion. Theor Appl Genet 91:1293–1300

    CAS  PubMed  Google Scholar 

  • Hayward AC (1993) The host of Xanthomonas. In: Swings JG, Civerolo EL (eds) Xanthomonas, 1st edn. Chapman & Hall, London, pp 51–54

    Google Scholar 

  • Holub EB (2007) Natural variation in innate immunity of a pioneer species. Curr Opin Plant Biol 10:415–424

    CAS  PubMed  Google Scholar 

  • Hu Z, Huang S, Sun M, Wang H, Hua W (2012) Development and application of single nucleotide polymorphism markers in the polyploid Brassica napus by 454 sequencing of expressed sequence tags. Plant Breed 131:293–299

    CAS  Google Scholar 

  • Huang L, Yang Y, Zhang F, Cao J (2017) A genome wide SNP-based genetic map and QTL mapping for agronomic traits in Chinese cabbage. Sci Rep 7:463305

    Google Scholar 

  • Hueck CJ (1998) Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 62:379–433

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ignatov A, Kuginuki Y, Hida K (1999) Vascular stem resistance to black rot in Brassica oleracea. Can J Bot 77:442–446

    Google Scholar 

  • Ignatov A, Kuginuki Y, Suprunova TP, Pozmogova GE, Seitova AM, Dorokhov DB, Hirai M (2000a) RAPD-markers linked to the locus for resistance to race 4 pathogen for black rot Xanthomonas campestris pv. campestris (Pamm.) Dow., in Brassica rapa L. Genetika 36:357–360

    CAS  PubMed  Google Scholar 

  • Ignatov A, Kuginuki Y, Hida K (2000b) Distribution and inheritance of race-specific resistance to Xanthomonas campestris pv. campestris in Brassica rapa and B. napus. J Russ Phytopathol Soc 1:89–94

    Google Scholar 

  • Izzah NK, Lee J, Jayakodi M, Perumal S, Jin M, Park B-S, Ahn K, Yang T-J (2014) Transcriptome sequencing of two parental lines of cabbage (Brassica oleracea L. var. capitata L.) and construction of an EST-based genetic map. BMC Genom 15:149. http://www.biomedcentral.com/1471-2164/15/149

    PubMed  PubMed Central  Google Scholar 

  • Jamwal RS, Sharma PP (1986) Inheritance of resistance to black rot (Xanthomonas campestris pv. campestris) in cauliflower (Brassica oleracea var. botrytis). Euphytica 35:941–943

    Google Scholar 

  • Jensen BD, Massomo SMS, Swai IS, Anderson SB (2005) Field evaluation for resistance to the black rot pathogen Xanthomonas campestris pv. campestris in cabbage (Brassica oleracea). Eur J Plant Pathol 113:297–308

    Google Scholar 

  • Jiang G-L (2015) Molecular marker-assisted breeding: a plant breeder’s review. In: Advances in plant breeding strategies: breeding, biotechnology and molecular tools, pp 431–472

    Google Scholar 

  • Jiang H, Song W, Li A, Yang X, Sun D (2011) Identification of genes differentially expressed in cauliflower associated with resistance to Xanthomonas campestris pv. campestris. Mol Biol Rep 38:621–629

    CAS  PubMed  Google Scholar 

  • Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, Ralph PE, Tomsho LP, Hu Y, Liang H, Soltis PS, Soltis DE, Clifton SW, Schlarbaum SE, Schuster SC, Ma H, Leebens-Mack J, de Pamphili CW (2011) Ancestral polyploidy in seed plants and angiosperms. Nature 473:97–100

    CAS  PubMed  Google Scholar 

  • Jin H, Sun Y, Yang Q, Chao Y, Kang J, Jin H, Li Y, Margaret G (2010) Screening of genes induced by salt stress from Alfalfa. Mol Biol Rep 37:745–753

    CAS  PubMed  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    CAS  Google Scholar 

  • Jungblut P, Wittmann-Liebold B (1995) Protein analysis on a genomic scale. J Biotechnol 41:111–120

    CAS  PubMed  Google Scholar 

  • Kaneko Y, Bang SW (2014) Interspecific and intergeneric hybridization and chromosomal engineering of brassicaceae crops. Breed Sci 64:14–22

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kapoor KS, Gill HS, Sharma SR (1985) A technique for artificial inoculation of cauliflower seedlings with Sclerotinia sclerotiarum (Lib.) de Bery. J Phytopathol 112:191–192

    Google Scholar 

  • Karpechenko GD (1928) Polyploid hybrids of Raphanus sativus L. × Brassica oleracea L. Z Indukt Abstamm Vererbungsl 48:1–85

    Google Scholar 

  • Kaur R, Shivani Saxena B, Kanwar HS, Dohroo NP, Majeed S, Sharma DR (2009) Detecting RAPD markers associated with black rot resistance in cabbage (Brassica oleracea var. capitata). Fruit Veg Cereal Sci Biotechnol 3:12–15

    Google Scholar 

  • Kifuji Y, Hanzaea H, Terasawa Y, Nishio T (2013) QTL analysis of black rot resistance in cabbage using newly developed EST-SNP markers. Euphytica 190:289–295

    CAS  Google Scholar 

  • Lee JH, Kim J-C, Jang KS, Choi YH, Ahn KG, Choi GJ (2013) Development of efficient screening method for resistance of cabbage cultivars to black rot disease caused by Xanthomonas campestris pv. campestris. Res Plant Dis 19:95–101

    Google Scholar 

  • Lee J, Izzah NK, Jayakodi M et al (2015a) Genome-wide SNP identification and QTL mapping for black rot resistance in cabbage. BMC Plant Biol 15:32. https://doi.org/10.1186/s12870-015-0424-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee Y-G, Jeong N, Kim JH, Lee L et al (2015b) Development, validation and genetic analysis of a large soybean SNP genotyping array. Plant J 81:625–636

    CAS  PubMed  Google Scholar 

  • Lema M, Velasco P, Soengas P, Francisco M, Cartea ML (2012) Screening for resistance to black rot in Brassica oleracea crops. Plant Breed 131:607–613

    Google Scholar 

  • Lorenz AJ, Chao S, Asoro FG, Heffner EL, Hayashi T, Iwata H, Smith KP, Sorrells MK, Jannink JL (2011) Genomic selection in plant breeding: knowledge and prospects. Adv Agron 110:77–123

    Google Scholar 

  • Luo Y, Lv GL, Wu WT, Chen SN, Cheng ZQ (2010) Analysis of genome expression in the response of Oryza granulata to Xanthomonas oryzae pv oryzae. Mol Biol Rep 37:875–892

    CAS  PubMed  Google Scholar 

  • Maji A, Nath R (2015) Pathogenecity test by using different inoculation methods on Xanthomonas campestris pv. campestris caused of black rot of cabbage. IMPACT Int J Res Appl Nat Soc Sci 3(2):53–58

    Google Scholar 

  • Marone D, Russo MA, Laido G, De Leonardis AM, Mastrangelo AM (2013) Plant nucleotide binding site-leucine rich repeat (NBS-LRR) genes: active guardians in host defense reponse. Int J Mol Sci 14:7302–7326

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mason AS, Nelson MN, Yan G, Cowling WA (2011) Production of viable male unreduced gametes in Brassica interspecific hybrids is genotype specific and stimulated by cold temperatures. BMC Plant Biol 11:103

    CAS  PubMed  PubMed Central  Google Scholar 

  • Massimo Z, Francesco C, Annalisa S, Massimo M (2007) Detection and identification of the crucifer pathogen, Xanthomonas campestris pv. campestris, by PCR amplification of the conserved Hrp/type III secretion system gene hrc C. Eur J Plant Pathol 118:299–306

    Google Scholar 

  • Matros A, Kaspar S, Witzel K, Mock HP (2011) Recent progress in liquid chromatography-based separation and label-free quantitative plant proteomics. Phytochem 72:963–974

    CAS  Google Scholar 

  • Mehta A, Brasileiro ACM, Souza DSL, Romano E et al (2008) Plant–pathogen interactions: what is proteomics telling us? FEBS J 275:3731–3746

    CAS  PubMed  Google Scholar 

  • Meng J, Lu M (1993) Genotype effects of Brassica napus on its reproductive behavior after pollination with B. juncea. Theor Appl Genet 87:238–242

    CAS  PubMed  Google Scholar 

  • Morgante M, Salamini F (2003) From plant genomics to breeding practice. Curr Opin Biotechnol 14:214–219

    CAS  PubMed  Google Scholar 

  • Mulema JMK, Vicente JG, Pink DAC et al (2012) Characterization of isolates that cause black rot of crucifers in East Africa. Eur J Plant Pathol 133:427–438

    CAS  Google Scholar 

  • Mun JH, Yu HJ, Park S, Park B-S (2009) Genome-wide identification of NBS-encoding resistance genes in Brassica rapa. Mol Genet Genomics 282:617–631

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nagaharu U (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Japan J Bot 7:389–452

    Google Scholar 

  • Niemann J, Wojciechowski A, Janowicz J (2012) Broadening the variability of quality traits in rapeseed through interspecifichybridization with an application of immature embryo culture. J Biotechnol Comput Biol Bionanotechnol 93:109–115

    CAS  Google Scholar 

  • Parkin IA, Koh C, Tang H, Robinson SJ, Kagale S, Clarke WE et al (2014) Transcriptome and methylome profiling reveals relics of genome dominance in the mesopolyploid Brassica oleracea. Genome Biol 15(6):R77

    PubMed  PubMed Central  Google Scholar 

  • Penazova E, Kopta T, Jurica M, Pecenka J, Eichmeier A, Pokluda R (2018) Testing of inoculation methods and susceptibility testing of perspective cabbage breeding lines (Brassica oleracea convar. capitata) to the black rot disease caused by Xanthomonas campestris pv. campestris. Acta Univ Silv Mendel Brun 66:139–148

    Google Scholar 

  • Perumal S, Waminal NE, Lee J et al (2017) Elucidating the major hidden genomic components of the A, C and AC genomes and their influence on Brassica evolution. Sci Rep 7:17986

    PubMed  PubMed Central  Google Scholar 

  • Prakash S (1973) Non-homologous meiotic pairing in the A and B genomes of Brassica: its breeding significance in the production of variable amphidiploids. Genet Res 21:133–137

    Google Scholar 

  • Prakash S, Chopra VL (1988) Introgression of resistance to shattering in Brassica napus from Brassica juncea through non-homologous recombination. Plant Breed 101:167–168

    Google Scholar 

  • Rabilloud T, Chevallet M, Luche S, Lelong C (2010) Two-dimensional gel electrophoresis in proteomics: past, present and future. J Proteom 73:2064–2077

    CAS  Google Scholar 

  • Rafalski JA (2002) Novel genetic mapping tools in plants: SNPs and LD-based approaches. Plant Sci 162:329–333

    CAS  Google Scholar 

  • Ragimekula N, Varadarajula NN, Mallapuram SP, Gangimeni G, Reddy RK, Kondreddy HR (2013) Marker assisted selection in disease resistance breeding. J Plant Breed Genet 01:90–109

    Google Scholar 

  • Rahman H, Bennett RA, Kebede B (2018) Molecular mapping of QTL alleles of Brassica oleracea affecting days to flowering and photosensitivity in spring Brassica napus. PLoS ONE 13:e0189723

    PubMed  PubMed Central  Google Scholar 

  • Ribaut JM, de Vicente MC, Delannay X (2010) Molecular breeding in developing countries: challenges and perspectives. Curr Opin Plant Biol 13:213–218

    PubMed  Google Scholar 

  • Roohie RK, Umesha S (2012) Development of multiplex PCR for the specific detection of Xanthomonas campestris pv. campestris in cabbage and correlation with disease incidence. J Plant Pathol. https://doi.org/10.4172/2157-7471.1000127

    Article  Google Scholar 

  • Roohie RK, Umesha S (2015) Identification of genes associated with black rot resistance in cabbage through suppression subtractive hybridization. 3 Biotech 5:1089–1100

    PubMed  PubMed Central  Google Scholar 

  • Rudd S (2003) Expressed sequence tags: alternative or complement to whole genome sequences? Trend Plant Sci 8:321–329

    CAS  Google Scholar 

  • Sagi MS, Deokar AA, Taran B (2017) Genetic analysis of NBS-LRR gene family in chickpea and their expression profiles in response to ascochyta blight infection. Front Plant Sci 8:838

    PubMed  PubMed Central  Google Scholar 

  • Saha P, Kalia P, Sharma P, Sharma TR (2014) Race-specific genetics of resistance to black rot disease [Xanthomonas campestris pv. campestris (Xcc) (Pammel) Dowson] and the development of three random amplified polymorphic DNA markers in cauliflower. J Hort Sci Biotechnol 89:480–486

    Google Scholar 

  • Saha P, Kalia P, Sharma M, Singh D (2016) New source of black rot disease resistance in Brassica oleracea and genetic analysis of resistance. Euphytica 207:35–48

    CAS  Google Scholar 

  • Saharan GS (1993) Disease resistance. In: Labana KS, Banga SS, Banga SK (eds) Breeding oilseed Brassicas. Berlin, Springer, pp 181–205

    Google Scholar 

  • Schaad NW, Dianese JC (1981) Cruciferous weeds as sources of inoculum of Xanthomonas campestris in black rot of crucifers. Phytopathology 71:1215–1220

    Google Scholar 

  • Schranz ME, Lysak MA, Mitchell-Olds T (2006) The ABC’s of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci 11:535–542

    CAS  PubMed  Google Scholar 

  • Shae JJ, Kado CI (1988) Whole plant wound inoculation for consistent reproduction of black rot of crucifers. Phytopathology 78:981–986

    Google Scholar 

  • Sharma BR, Swarup V, Chatterjee SS (1972) Inheritance of resistance to black rot in cauliflower. Can J Genet Cytol 14:363–370

    Google Scholar 

  • Sharma BR, Swarup V, Chatterjee SS (1977) Resistance to black rot disease in cauliflower. Sci Hortic 7:1–7

    Google Scholar 

  • Sharma SR, Kapoor KS, Gill HS (1995) Screening against Sclerotinia rot (Sclerotinia sclerotiorum), downy mildew (Peronospora parasitica) and black rot (Xanthomonas campestris) in cauliflower Brassica oleracea var. botrytis sub var. cauliflora. Indian J Agric Sci 65:916–918

    Google Scholar 

  • Sharma AB, Shinada T, Kifuji Y, Kitashiba H, Nishio T (2012) Molecular mapping of a male fertility restorer locus of Brassica oleracea using EST-based SNP markers and analysis of a syntenic region in Arabidopsis thaliana for identification of genes encoding PPR proteins. Mol Breed 30:1781–1792

    Google Scholar 

  • Sharma A, Li X, Lim YP (2014) Comparative genomics of brassicaceae crops. Breed Sci 64:3–13

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma BB, Kalia P, Yadava DK, Dingh D, Sharma TR (2016) Genetics and molecular mapping of black rot resistance locus Xca1bc on chromosome B-7 in Ethiopian mustard (Brassica carinata A. Braun). PLoS ONE 11:e0152290. https://doi.org/10.1371/journal.pone.0152290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma BB, Kalia P, Dingh D, Sharma TR (2017) Introgression of black rot resistance from Brasssica carinata to cauliflower (Brassica oleracea botrytis group) through embryo rescue. Front Plant Sci 8:1255

    PubMed  PubMed Central  Google Scholar 

  • Shen X, Zhou M, Lu W, Ohm H (2003) Detection of fusarium head blight resistance QTL in a wheat population using bulk segregant analysis. Theor Appl Genet 106:1041–1047

    CAS  PubMed  Google Scholar 

  • Siemens J (2002) Interspecific hybridization between wild relatives and Brassica napus to introduce new resistance traits into the oilseed rape gene pool. Czech J Genet Plant Breed 38:155–157

    Google Scholar 

  • Singh D, Dhar S (2011) Bio-PCR based diagnosis of Xanthomonas campestris pathovars in black rot infected leaves of crucifers. Indian Phytopathol 1:7–11

    Google Scholar 

  • Singh R, Trivedi BM, Gill HS, Sen B (1987) Breeding for resistance for black rot, downy mildew and curd blight in Indian cauliflower. Cruciferae Newslett 12:96–97

    Google Scholar 

  • Singh D, Dhar S, Yadava DK (2011) Genetic and pathogenic variability of Indian strains of Xanthomonas campestris pv. campestris causing black rot disease in crucifers. Curr Microbiol 63:551–560

    CAS  PubMed  Google Scholar 

  • Singh D, Rathaur PS, Vicente JG (2016) Characterization, genetic diversity and distribution of Xanthomonas campestris pv. campestris races causing black rot disease in cruciferous crops of India. Plant Pathol 65:1411–1418

    CAS  Google Scholar 

  • Soengas P, Hand P, Vicente JG, Pole JM, Pink DAC (2007) Identification of quantitative trait loci for resistance to Xanthomonas campestris pv. campestris in Brassica rapa. Theor Appl Genet 114:637–645

    CAS  PubMed  Google Scholar 

  • Soltis PS, Soltis DE (2000) The role of genetic and genomic attributes in the success of polyploids. Proc Natl Acad Sci USA 97:7051–7057

    CAS  PubMed  Google Scholar 

  • Sonah H, Deshmukh RK, Singh VP, Gupta DK, Singh NK, Sharma TR (2011) Genomic resources in horticultural crops: status, utility and challenges. Biotechnol Adv 29:199–209

    PubMed  Google Scholar 

  • Song J, Li Z, Liu Z, Guo Y, Qiu L-J (2017) Next-generation sequencing from bulk-segregant analysis accelerates the simultaneous identification of two quantitative genes in soybean. Front Plant Sci 8:919. https://doi.org/10.3389/fpls.2017.00919

    Article  PubMed  PubMed Central  Google Scholar 

  • Taylor JD, Conway J, Roberts SJ, Astley D, Vicente JG (2002) Sources and origin of resistance to Xanthomonas campestris pv. campestris in Brassica genomes. Phytopathology 92:105–111

    CAS  PubMed  Google Scholar 

  • Thakur BS, Korla BN, Khosla K (2003) Inheritance of black rot resistance in late cauliflower. Ann Agric Res 24:244–248

    Google Scholar 

  • Tonguc M, Griffiths PD (2004) Development of black rot resistant interspecific hybrids between Brassica oleracea L. cultivars and Brassica accession A 19182, using embryo rescue. Euphytica 136:313–318

    Google Scholar 

  • Tonguc M, Earle E, Griffiths PD (2003) Segregation distortion of Brassica carinata derived black rot resistance in Brassica oleracea. Euphytica 134:269–276

    CAS  Google Scholar 

  • Tonu NN, Doullah MA, Shimizu M et al (2013) Comparison of positions of QTLs conferring resistance to Xanthomonas campestris pv. camperstris in Brassica oleracea. Am J Plant Sci 4:11–20

    Google Scholar 

  • Trick M, Adamski NM, Mugford SG, Jiang CC, Febrer M, Uauy C (2012) Combining SNP discovery from next-generation sequencing data with bulk segregant analysis (BSA) to fine-map genes in polyploidy wheat. BMC Plant Biol 12:14. https://doi.org/10.1186/1471-2229-12-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuji J, Somerville SC, Hammerschmidt R (1991) Identification of a gene in Arabidopsis thaliana that controls resistance to Xanthomonas campestris pv. campestris. Physiol Mol Plant Pathol 38:57–65

    Google Scholar 

  • van Ooijen G, van den Burg HA, Cornelissen BJC, Takken FLW (2007) Structure and function of resistance proteins in solanaceous plants. Annu Rev Phytopathol 45:43–72

    PubMed  Google Scholar 

  • Vicente JG, Holub EB (2013) Xanthomonas campestris pv. campestris (cause of black rot of crucifers) in the genomic era is still a worldwide threat to brassica crops. Mol Plant Pathol 14:2–18

    CAS  PubMed  Google Scholar 

  • Vicente JG, Conway J, Roberts SJ, Taylor JD (2001) Identification and origin of Xanthomonas campestris pv. camperstris races and related pathovars. Phytopathology 91:492–499

    CAS  PubMed  Google Scholar 

  • Vicente JG, Taylor JD, Sharpe AG, Parkin IAP, Lydiate DJ, King GJ (2002) Inheritance of race-specific resistance to Xanthomonas campestris pv. campestris in Brassica genomes. Phytopathology 92:1134–1141

    CAS  PubMed  Google Scholar 

  • Villeth GR Jr, Reis FB, Tonietto A, Huergo L, de Souza EM, Pedrosa FO, Franco OL, Mehta A (2009) Comparative proteome analysis of Xanthomonas campestris pv. campestris in the interaction with the susceptible and the resistant cultivars of Brassica oleracea. FEMS Microbiol Lett 298:260–266

    CAS  PubMed  Google Scholar 

  • Vincelli P, Tisserat N (2008) Nucleic acid- based pathogen detection in applied plant pathology. Plant Dis 92:660–669

    CAS  Google Scholar 

  • Wang G-X, Yan H, Zeng X-Y, Sheng X-G, Tang Y, Han S, Zong M, Lu K, Liu F (2011) New alien addition lines resistance to black rot generated by somatic hybridization between cauliflower and black mustard. Acta Hortic Sin 38:1901–1910

    CAS  Google Scholar 

  • Weerakoon SR, Si P, Zili W, Meng J, Yan G (2009) Production and confirmation of hybrids through interspecific crossing between tetraploid B. juncea and diploid B. oleracea towards a hexaploid Brassica population 16th Australian Research Assembly on Brassicas, Ballarat, Victoria

  • Westman AL, Kresovich S, Dickson MH (1999) Regional variation in Brassica nigra and other weedy crucifers for disease reaction to Alternaria brassicicola and Xanthomonas campestris pv. campestris. Euphytica 106:253–259

    Google Scholar 

  • Williams PH (1980) Black rot: a continuing threat to world crucifers. Plant Dis 64:736–742

    Google Scholar 

  • Witzel K, Neugart S, Ruppel S, Schreiner M, Wiesner M, Baldermann S (2015) Recent progress in the use of ‘omics technologies in brassicaceous vegetables. Front Plant Sci 6:244. https://doi.org/10.3389/fpls.2015.00244

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang K, Nath UK, Biswas MK, Kayum MA et al (2018) Whole-genome sequencing of Brassica oleracea var. capitata reveals new diversity of the mitogenome. PLoS ONE 13:e01194356

    Google Scholar 

  • Ye G, Smith KF (2008) Marker assisted gene pyramiding for inbred line development: basic principles and practical guidelines. Int J Plant Breed 2:1–10

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Dey.

Ethics declarations

Conflict of interest

All the authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Dey, S.S., Bhatia, R. et al. Molecular breeding for resistance to black rot [Xanthomonas campestris pv. campestris (Pammel) Dowson] in Brassicas: recent advances. Euphytica 214, 196 (2018). https://doi.org/10.1007/s10681-018-2275-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-018-2275-3

Keywords