Advertisement

Euphytica

, 214:185 | Cite as

Developing and validating microsatellite markers in elephant grass (Pennisetum purpureum S.)

  • Yolanda López
  • Aleksey Kurashev
  • Christine Chase
  • Maria Gallo
  • Lynn Sollenberger
  • Fredy Altpeter
  • Jianping WangEmail author
Article

Abstract

Elephant grass [Pennisetum purpureum S.; syn. Cenchrus purpureus (Schumach.) Morrone] is an important global forage crop and is recognized for high yields of herbage with good nutritive value. It also has high biomass potential to be utilized as a biofuel feedstock. Whereas several previous genetic studies adapted simple sequence repeat (SSR) markers from pearl millet [Pennisetum glaucum (L.) R.Br.] for investigations in elephant grass, the present study developed SSR markers from 3536 DNA sequences derived from 16 elephant grass entries. A total of 3866 SSRs were identified including 1028 monomeric, 2019 dimeric, 735 trimeric, 49 tetrameric, 20 pentameric and 15 hexameric repeat motifs. Three hundred and seven sequences contained more than one repeated motif, and 154 SSRs were present in compound formation. Susequenctly,  four elephant grass and two pearl millet genotypes were chosen to validate 727 SSR markers. Of these, 628 markers produced visually detectable amplification products, including 73 (11.6%) polymorphic ones across all six genotypes. Polymorphism between the four elephant grass genotypes was revealed by 316 (50.6%) markers with diversity index values ranging from 0.75 to 0.38. Dimeric SSRs had the highest polymorphic rate (48.7%). These validated SSR markers had 58.6% (368 of 628) transferability rate to pearl millet. The availability of these polymorphic SSR markers will support advanced genetic studies in P. purpureum and its relatives.

Keywords

Cenchrus purpureus Elephantgrass Napiergrass Pennisetum glaucum Pearl millet SSR markers Microsatellites 

Notes

Acknowledgements

The authors appreciate William Anderson USDA-ARS Tifton GA for providing elephant grass accession N122, Andrea Villa, Agronomy Department, University of Florida, for her guidance on running the acrylamide gels, Liping Wang, Agronomy Department, University of Florida, for her help reviewing the manuscript, Paul D. Ramírez-López, Graciela Jimenez and Katherine Toro, for their helps in checking values in the tables. The research was supported by USDA Tropical and Subtropical Agriculture Research Caribbean Award 2008-34135-19505 and USDA National Institute of Food and Agriculture, Hatch Project 1011664.

Supplementary material

10681_2018_2256_MOESM1_ESM.xlsx (132 kb)
Supplementary material 1 (XLSX 132 kb)

References

  1. Azevedo ALS, Costa PP, Machado JC, Machado MA, Pereira AV, da Silva Lédo FJ (2012) Cross species amplification of Pennisetum glaucum microsatellite markers in Pennisetum purpureum and genetic diversity of napier grass accessions. Crop Sci 52:1776–1785CrossRefGoogle Scholar
  2. Barney JN, DiTomaso JM (2008) Nonnative species and bioenergy: are we cultivating the next invader? Bioscience 58(1):64–70CrossRefGoogle Scholar
  3. Bhandari AP, Sukanya DH, Ramesh CR (2006) Application of isozyme data in fingerprinting napiergrass (Pennisetum purpureum Schum.) for germplasm management. Genet Res Crop Evol 53:253–264CrossRefGoogle Scholar
  4. Blair MW, Pedraza F, Buendia HF, Gaitán-Solís E, Beebe SE, Gepts P, Tohme J (2003) Development of a genome-wide anchored microsatellite map for common bean (Phaseolus vulgaris L.). Theor Appl Genet 107:1362–1374CrossRefGoogle Scholar
  5. Burton GW (1989) Registration of ‘Merkeron’ napier grass. Crop Sci 29:1327CrossRefGoogle Scholar
  6. Cidade FW, Vigna BB, De Souza FH, Valls JF, Dall’Agnol M, Zucchi MI, de Souza-Chies TT, Souza AP (2013) Genetic variation in polyploid forage grass: assessing the molecular genetic variability in the Paspalum genus. BMC Genet 14:50.  https://doi.org/10.1186/1471-2156-14-50 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Collins T (2010) Is there an alternative to napier grass? Matching genetic resources to meet the demands of smallholder farmers. ILRI, Nairobi. http://hdl.handle.net/10568/2365
  8. Cordeiro GM, Casu R, McIntyre CL, Manners JM, Henry RJ (2001) Microsatellite markers from sugarcane (Saccharum spp.) ESTs cross transferable to Erianthus and Sorghum. Plant Sci 160:1115–1123CrossRefGoogle Scholar
  9. Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499–510.  https://doi.org/10.1038/nrg3012 CrossRefGoogle Scholar
  10. De Lima RSN, Daher RF, Gonçalves LSA, Rossi DA, do Amaral Júnior AT, Pereira MG, Lédo FJS (2011) RAPD and ISSR markers in the evaluation of genetic divergence among accessions of elephant grass. Genet Mol Res 10:1304–1313PubMedGoogle Scholar
  11. Don RH, Cox PT, Wainwright BJ, Baker K, Mattick JS (1991) “Touchdown” PCR to circumvent spurious priming during gene amplification. Nucl Acids Res 19:4008.  https://doi.org/10.1093/nar/19.14.4008 CrossRefGoogle Scholar
  12. Ellegren H (2004) Microsatellites: simple sequences with complex evolution. Nat Rev Genet 5:435–445CrossRefGoogle Scholar
  13. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  14. Fountain J, Qin H, Chen C, Dang P, Wang ML, Guo B (2011) A note on development of a low-cost and high-throughput SSR-based genotyping method in peanut (Arachis hypogaea L.). Peanut Sci 38:122–127CrossRefGoogle Scholar
  15. Hanna WW, Chaparro CJ, Mathews BW, Burns JC, Sollenberger LE, Carpenter JR (2004) Perennial Pennisetum. In: Moser LE, Burson BL, Sollenberger LE (eds) Warm-season (C4) grasses. ASA/CSSA/SSSA, Madison, pp 503–535Google Scholar
  16. Harris K, Anderson W, Malik R (2010) Genetic relationship among napier grass (Pennisetum purpureum Schum.) nursery accessions using AFLP markers. Plant Genet Resour 8:63–70.  https://doi.org/10.1017/s1479262109990165 CrossRefGoogle Scholar
  17. Hodel RGJ, Segovia-Salcedo MC, Landis JB, Crowl AA, Sun M, Liu X, Gitzendanner MA, Douglas NA, Germain-Aubrey CC, Chen S, Soltis DE, Soltis PS (2016) The report of my death was an exaggeration: a review for researchers using microsatellites in the 21st century. Appl Plant Sci 4:1600025.  https://doi.org/10.3732/apps.1600025 CrossRefGoogle Scholar
  18. Kalia RK, Rai MK, Kalia S, Singh R, Dhawan AK (2011) Microsatellite markers: an overview of the recent progress in plants. Euphytica 177:309–334.  https://doi.org/10.1007/s10681-010-0286-9 CrossRefGoogle Scholar
  19. Kandel R, Singh HP, Singh BP, Harris-Shultz KR, Anderson WF (2016) Assessment of genetic diversity in napier grass (Pennisetum purpureum Schum.) using microsatellite, single-nucleotide polymorphism, and insertion-deletion markers from pearl millet (Pennisetum glaucum [L.] R. Br.). Plant Mol Biol Rep 34:265–272.  https://doi.org/10.1007/s11105-015-0918-2 CrossRefGoogle Scholar
  20. Kannan B, Sinche M, Carlos Corsato C, Altpeter F (2014) Breeding of elephant grass (Pennisetum purpureum) for improved biomass yield and biosafety. In: Symposium on biotechnology for fuels and chemicals April 28–May 01, 2014, Clearwater Beach, FLGoogle Scholar
  21. Katti MV, Ranjekar PK, Gupta VS (2001) Differential distribution of simple sequence repeats in eukaryotic genome sequences. Mol Biol Evol 18:1161–1167.  https://doi.org/10.1093/oxfordjournals.molbev.a003903 CrossRefPubMedGoogle Scholar
  22. Kawube G, Alicai T, Wanjala B, Njahira M, Awalla J, Skilton R (2015) Genetic diversity in napier grass (Pennisetum purpureum) assessed by SSR Markers. J Agric Sci 7:147Google Scholar
  23. Lagercrantz U, Ellegren H, Andersson L (1993) The abundance of various polymorphic microsatellite motifs differs between plants and vertebrates. Nucl Acids Res 21:1111–1115CrossRefGoogle Scholar
  24. Li C, Bai G, Chao S, Wang Z (2015) A high-density SNP and SSR consensus map reveals segregation distortion regions in wheat. Biomed Res Int.  https://doi.org/10.1155/2015/830618 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Lightfoot DA, Iqbal MJ (2013) Molecular mapping and breeding with microsatellite markers. Methods Mol Biol (Clifton, NJ) 1006:297–317.  https://doi.org/10.1007/978-1-62703-389-3_20 CrossRefGoogle Scholar
  26. López Y, Seib J, Woodard K, Chamusco K, Sollenberger L, Gallo M, Flory SL, Chase C (2014) Genetic diversity of biofuel and naturalized napiergrass (Pennisetum purpureum). Invasive Plant Sci Man 7:229–236CrossRefGoogle Scholar
  27. Maia LC, Souza VQ, Kopp MM, Carvalho FIF, Oliveira AC (2009) Tandem repeat distribution of gene transcripts in three plant families. Genet Mol Biol 32:1–12CrossRefGoogle Scholar
  28. Miah G, Rafii MY, Ismail MR, Puteh AB, Rahim HA, Islam KN, Latif MA (2013) A review of microsatellite markers and their applications in rice breeding programs to improve blast disease resistance. Int J Mol Sci 14:22499–22528.  https://doi.org/10.3390/ijms141122499 CrossRefPubMedPubMedCentralGoogle Scholar
  29. MISA—MIcroSAtellite identification tool http://pgrc.ipk-gatersleben.de/misa
  30. Morais RFD, Souza BJD, Leite JM, Soares LHDB, Alves BJR, Boddey RM, Urquiaga S (2009) Elephant grass genotypes for bioenergy production by direct biomass combustion. Pesqui Agropecu Bras 44:133–140CrossRefGoogle Scholar
  31. Morgante M, Olivieri AM (1993) PCR-amplified microsatellites as markers in plant genetics. Plant J 3:175–182CrossRefGoogle Scholar
  32. Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat Genet 30:194–200CrossRefGoogle Scholar
  33. Na C, Sollenberger LE, Erickson JE, Woodard KR, Castillo MS, Mullenix MK, Vendramini JMB, Silveira ML (2015a) Management of perennial warm-season bioenergy grasses. II. Seasonal differences in elephant grass and energycane morphological characteristics affect responses to harvest frequency and timing. Bioenergy Res 8:618–626.  https://doi.org/10.1007/s12155-014-9542-5 CrossRefGoogle Scholar
  34. Na C, Sollenberger LE, Erickson JE, Woodard KR, Vendramini JMB, Silveira ML (2015b) Management of perennial warm-season bioenergy grasses. I. Biomass harvested, nutrient removal, and persistence responses of elephant grass and energycane to harvest frequency and timing. Bioenergy Res 8:581–589.  https://doi.org/10.1007/s12155-014-9541-6 CrossRefGoogle Scholar
  35. Na C, Fedenko JR, Sollenberger LE, Erickson JE (2016a) Harvest management affects biomass composition responses of C4 perennial bioenergy grasses in the humid subtropical USA. Glob Change Biol—Bioenergy 8:1150–1161.  https://doi.org/10.1111/gcbb.12319 CrossRefGoogle Scholar
  36. Na C, Sollenberger LE, Fedenko JR, Erickson JE, Woodard KR (2016b) Seasonal changes in chemical composition and leaf proportion of elephant grass and energycane biomass. Ind Crops Prod 94:107–116CrossRefGoogle Scholar
  37. Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273CrossRefGoogle Scholar
  38. Oliveira EJ, Pádua JG, Zucchi MI, Vencovsky R, Vieira MLC (2006) Origin, evolution and genome distribution of microsatellites. Genet Mol Biol 29:294–307CrossRefGoogle Scholar
  39. Page RD (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358Google Scholar
  40. Pavlíček A, Hrdá Š, Flegr J (1999) Free-tree–freeware program for construction of phylogenetic trees on the basis of distance data and bootstrap/jackknife analysis of the tree robustness. Application in the RAPD analysis of genus Frenkelia. Folia Biol 45:97–99Google Scholar
  41. Peakall R, Gilmore S, Keys W, Morgante M, Rafalski A (1998) Cross-species amplification of soybean (Glycine max) simple sequence repeats (SSRs) within the genus and other legume genera: implications for the transferability of SSRs in plants. Mol Biol Evol 15:1275–1287.  https://doi.org/10.1093/oxfordjournals.molbev.a025856 CrossRefPubMedGoogle Scholar
  42. Powell W, Machray GC, Provan J (1996) Polymorphism revealed by simple sequence repeats. Trends Plant Sci 1:215–222CrossRefGoogle Scholar
  43. Pupko T, Graur D (1999) Evolution of microsatellites in the yeast Saccharomyces cerevisiae: role of length and number of repeated units. Mol Evol 48:313–316CrossRefGoogle Scholar
  44. Richardson DM, Blanchard R (2011) Learning from our mistakes: minimizing problems with invasive biofuel plants. Curr Opin Environ Sustain 3:36–42CrossRefGoogle Scholar
  45. Rocha JR, Machado JC, Carneiro PCS, da Costa Carneiro J, Resende MDV, da Silva Lédo FJ, de Souza Carneiro JE (2017) Bioenergetic potential and genetic diversity of elephant grass via morpho-agronomic and biomass quality traits. Ind Crops Prod 95:485–492.  https://doi.org/10.1016/j.indcrop.2016.10.060 CrossRefGoogle Scholar
  46. Sakiyama NS, Ramos HCC, Caixeta ET, Pereira MG (2014) Plant breeding with marker-assisted selection in Brazil. Crop Breed Appl Biotechnol 14:54–60.  https://doi.org/10.1590/s1984-70332014000100009 CrossRefGoogle Scholar
  47. Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234CrossRefGoogle Scholar
  48. Scotti I, Magni F, Fink R, Powell W, Binelli G, Hedley PE (2000) Microsatellite repeats are not randomly distributed within Norway spruce (Picea abies K.) expressed sequences. Genome 43:41–46.  https://doi.org/10.1139/g99-095 CrossRefPubMedGoogle Scholar
  49. Sinche M, Kannan B, Corsato C, Paudel D, López Y, Wang J, Altpeter F (2018) Development and characterization of a napiergrass (Pennisetum purpureum) mapping population for flowering time and biomass related traits. Submitted for publicationGoogle Scholar
  50. Sneath PHA, Sokal RR (1973) Numerical taxonomy: the principles and practice of numerical classification. W.H. Freeman, San FranciscoGoogle Scholar
  51. Sollenberger LE, Erickson JE, Woodard KR, Vendramini JMB, Na C, Fedenko JR (2013) Challenges and opportunities for use of grasses as biomass feedstocks in the southeast United States. In: Southeastern conference symposium abstracts, Atlanta, p 23Google Scholar
  52. Sollenberger LE, Woodard KR, Vendramini JM, Erickson JE, Langeland KA, Mullenix MK, Na C, Castillo M, Gallo M, Chase CD, López Y (2014) Invasive populations of elephant grass differ in morphological and growth characteristics from clones selected for biomass production. BioEnergy Res 7:1382–1391CrossRefGoogle Scholar
  53. Sonah H, Deshmukh RK, Sharma A, Singh VP, Gupta DK, Gacche RN, Rana JC, Singh NK, Sharma TR (2011) Genome-wide distribution and organization of microsatellites in plants: an insight into marker development in Brachypodium. PLoS ONE 6:e21298.  https://doi.org/10.1371/journal.pone.0021298 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Song Q, Jia G, Zhu Y, Grant D, Nelson RT, Hwang EY, Hyten DL, Cregan PB (2010) Abundance of SSR motifs and development of candidate polymorphic SSR markers (BARCSOYSSR_1. 0) in soybean. Crop Sci 50:1950–1960CrossRefGoogle Scholar
  55. Steele KA, Price AH, Shashidhar HE, Witcombe JR (2006) Marker-assisted selection to introgress rice QTLs controlling root traits into an Indian upland rice variety. Theor Appl Genet 112:208.  https://doi.org/10.1007/s00122-005-0110-4 CrossRefPubMedGoogle Scholar
  56. Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S (2001) Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res 11:1441–1452CrossRefGoogle Scholar
  57. Thiel T, Michalek W, Varshney R, Graner A (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106:411–422CrossRefGoogle Scholar
  58. Varshney RK, Thiel T, Stein N, Langridge P, Graner A (2002) In silico analysis on frequency and distribution of microsatellites in ESTs of some cereal species. Cell Mol Biol Lett 7:537–546Google Scholar
  59. Victoria FC, da Maia LC, de Oliveira AC (2011) In silico comparative analysis of SSR markers in plants. BMC Plant Biol 11:15.  https://doi.org/10.1186/1471-2229-11-15 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Vieira MLC, Santini L, Diniz AL, de Freitas Munhoz C (2016) Microsatellite markers: what they mean and why they are so useful. Genet Mol Biol 39:312–328.  https://doi.org/10.1590/1678-4685-GMB-2016-0027 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Wang Z, Weber JL, Zhong G, Tanksley SD (1994) Survey of plant short tandem DNA repeats. Theor Appl Genet 88:11–16.  https://doi.org/10.1007/bf00222386 CrossRefGoogle Scholar
  62. Wang J, Chen C, Na JK, Yu Q, Hou S, Paull RE, Moore PH, Alam M, Ming R (2008) Genome-wide comparative analyses of microsatellites in papaya. Trop Plant Biol 1:278–292CrossRefGoogle Scholar
  63. Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L, Mastrangelo AM et al (2014) Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. Plant Biotechnol J 12:787–796.  https://doi.org/10.1111/pbi.12183 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Wang Y, Yang C, Jin Q, Zhou D, Wang S, Yu Y, Yang L (2015) Genome-wide distribution comparative and composition analysis of the SSRs in Poaceae. BMC Genet 16:18.  https://doi.org/10.1186/s12863-015-0178-z CrossRefPubMedPubMedCentralGoogle Scholar
  65. Weber JL, May PE (1989) Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am J Hum Genet 44:388–396PubMedPubMedCentralGoogle Scholar
  66. Zane L, Bargelloni L, Patarnello T (2002) Strategies for microsatellite isolation: a review. Mol Ecol 11:1–16CrossRefGoogle Scholar
  67. Zhang Q, Ma B, Li H, Chang Y, Han Y, Li J, Wei G, Zhao S, Khan MA, Zhou Y, Chao Gu, Zhang X, Han Z, Korban SS, Li S, Han Y (2012) Identification, characterization, and utilization of genome-wide simple sequence repeats to identify a QTL for acidity in apple. BMC Genom 13:537.  https://doi.org/10.1186/1471-2164-13-537 CrossRefGoogle Scholar
  68. Zhao Y, Prakash CS, He G (2012) Characterization and compilation of polymorphic simple sequence repeat (SSR) markers of peanut from public database. BMC Res Notes 5:362.  https://doi.org/10.1186/1756-0500-5-362 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Agronomy Department, IFASUniversity of FloridaGainesvilleUSA
  2. 2.Horticultural Sciences DepartmentUniversity of FloridaGainesvilleUSA
  3. 3.Plant Molecular and Cellular Biology Program, Genetics InstituteUniversity of FloridaGainesvilleUSA
  4. 4.Delaware Valley UniversityDoylestownUSA

Personalised recommendations