Skip to main content
Log in

Characterization of an EMS-induced soybean mutant with an increased content of Af saponin and a new component Ab-δ in the seed hypocotyl

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Saponins are one of the components present in the soybean seeds that have various functional properties. The chemical structures and concentration of soyasaponins affect the taste of the processed soyfood, thereby limiting its industrial applications. Therefore, it is important to understand saponin biosynthesis to explore natural and artificial variation in the saponin components, which can be modified to suit its application. The objective of the present study was to identify and characterize an EMS-induced soybean mutant with an altered saponin composition from a pool of 892 M4 lines. The mutant PE1905 showed an increased content of saponin Af (336.0%). The content of saponin Ab, DDMP-αg, and DDMP-βg was decreased in the mutant PE1905 by 89.3, 24.8, and 63.1%, respectively compared to the wild-type Pungsannamul. Additionally, four new components were detected in the mutant PE1905 that were absent in the wild type. Of these, the compound 4 (designated as Ab-δ) had the highest concentration, and therefore it was further characterized by HPLC and LC-PDA/MS/MS analysis to know the chemical structure, and molecular weight and formula. Considering these details, along with the alterations in the saponin Af and Ab concentrations, it was presumed that the Ab-δ acts as a precursor for the synthesis of saponin Af and Ab. Thus, we predicted a biosynthetic pathway from the Ab-δ to Ab saponin. The inheritance analysis showed that the concentration of saponin Ab-δ is controlled by a single recessive gene in the mutant PE1905. The results from the present study would be helpful in understanding the mechanisms behind altered seed saponin composition in soybeans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Berhow MA, Wagner ED, Vaughn SF, Plewa MJ (2000) Characterization and antimutagenic activity of soybean saponins. Mutat Res Fundam Mol Mech Mutagen 448:11–22

    Article  CAS  Google Scholar 

  • Chae JH, Dhakal KH, Asekova S, Song JT, Lee JD (2013) Variation of fatty acid composition in a soybean ‘Pungsannamul’ mutation population by EMS treatment. Curr Res Agric Life Sci 31:47–52

    Google Scholar 

  • Chang W-W, Yu C-Y, Lin T-W, Wang P-H, Tsai Y-C (2006) Soyasaponin I decreases the expression of alpha 2,3-linked sialic acid on the cell surface and suppresses the metastatic potential of B16F10 melanoma cells. Biochem Biophys Res Commun 341:614–619

    Article  CAS  PubMed  Google Scholar 

  • Chitisankul WT et al (2018) Saponin composition complexities in hypocotyls and cotyledons of nine soybean varieties LWT-food. Sci Technol 89:93–103

    CAS  Google Scholar 

  • Fuzzati N, Pace R, Papeo G, Peterlongo F (1997) Identification of soyasaponins by liquid chromatography-thermospray mass spectrometry. J Chromatogr A 777:233–238

    Article  CAS  Google Scholar 

  • Ghani M, Kulkarni KP, Song JT, Shannon JG, Lee J-D (2016) Soybean sprouts: a review of nutrient composition, health benefits and genetic variation. Plant Breed Biotechnol 4:398–412

    Article  Google Scholar 

  • Hayashi K, Hayashi H, Hiraoka N, Ikeshiro Y (1997) Inhibitory activity of soyasaponin II on virus replication in vitro. Planta Med 63:102–105

    Article  CAS  PubMed  Google Scholar 

  • Kato S et al (2007) A new soybean [Glycine max] cultivar ‘Kinusayaka’ lacking three lipoxygenase isozymes and group A acetyl saponin. Bulletin of the National Agricultural Research Center for Tohoku Region, Japan

  • Kerwin SM (2004) Soy saponins and the anticancer effects of soybeans and soy-based foods. Curr Med Chem anti-Cancer Agents 4:263–272

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi A, Tsukamoto C, Tabuchi K, Adachi T, Okubo K (1999) Inheritance and characterization of a null allele for group A acetyl saponins found in a mutant soybean (Glycine max (L.) Merrill). Breed Sci 49:167–171

    Article  CAS  Google Scholar 

  • Kinjo J, Imagire M, Udayama M, Arao T, Nohara T (1998) Structure-hepatoprotective relationships study of soyasaponins I–IV having soyasapogenol B as aglycone. Planta Med 64:233–236

    Article  CAS  PubMed  Google Scholar 

  • Ko et al (2016) Soybean cultivar for soy-paste, ‘Uram’ with mechanization harvesting, large seed, disease resistance and high yield. Korean J Breed Sci 48:301–306

    Article  Google Scholar 

  • Krishnamurthy P, Tsukamoto C, Yang SH, Lee JD, Chung G (2012) An improved method to resolve plant saponins and sugars by TLC. Chromatographia 75:1445–1449

    Article  CAS  Google Scholar 

  • Krishnamurthy P, Lee JM, Tsukamoto C, Takahashi Y, Singh RJ, Lee JD, Chung G (2014a) Evaluation of genetic structure of Korean wild soybean (Glycine soja) based on saponin allele polymorphism. Genet Resour Crop Evol 61:1121–1130

    Article  CAS  Google Scholar 

  • Krishnamurthy P, Tsukamoto C, Singh RJ, Lee J-D, Kim H-S, Yang S-H, Chung G (2014b) The Sg-6 saponins, new components in wild soybean (Glycine soja Sieb. and Zucc.): polymorphism, geographical distribution and inheritance. Euphytica 198:413–424

    Article  CAS  Google Scholar 

  • Krishnamurthy P, Tsukamoto C, Takahashi Y, Hongo Y, Singh RJ, Lee JD, Chung G (2014c) Comparison of saponin composition and content in wild soybean (Glycine soja Sieb. and Zucc.) before and after germination. Biosci Biotechnol Biochem 78:1988–1996

    Article  CAS  PubMed  Google Scholar 

  • Krishnamurthy P, Tsukamoto C, Yang SH, Lee JD, Chung G (2014d) An improved method to resolve plant saponins and sugars by TLC. Chromatographia 75:1445–1449

    Article  CAS  Google Scholar 

  • Kudou S, Tonomura M, Tsukamoto C, Shimoyamada M, Uchida T, Okubo K (1992) Isolation and structural elucidation of the major genuine soybean saponin. Biosci Biotechnol Biochem 56:142–143

    Article  CAS  PubMed  Google Scholar 

  • Kudou S, Tonomura M, Tsukamoto C, Uchida T, Sakabe T, Tamura N, Okubo K (1993) Isolation and structural elucidation of DDMP-conjugated soyasaponins as genuine saponins from soybean seeds. Biosci Biotechnol Biochem 57:546–550

    Article  CAS  Google Scholar 

  • Kudou S, Tonomura M, Tsukamoto C, Uchida T, Yoshikoshi M, Okubo K (1994) Structural elucidation and physiological properties of genuine soybean saponins. In. ACS Publications

  • Masuda T, Goldsmith PD (2009) World soybean production: area harvested, yield, and long-term projections. Int Food Agribus Manag Rev 12:143–162

    Google Scholar 

  • Okubo K, Iijima M, Kobayashi Y, Yoshikoshi M, Uchida T, Kudou S (1992) Components responsible for the undesirable taste of soybean seeds. Biosci Biotechnol Biochem 56:99–103

    Article  CAS  Google Scholar 

  • Park J et al (2016) Characterization of a new allele of the saponin-synthesizing gene Sg-1 in soybean. Crop Sci 56:385–391

    Article  CAS  Google Scholar 

  • Salyer J, Eswaranandam S, Lee S-O (2013) Soyasaponin I, III, and soyasapogenol B inhibit proliferation and modulate PKC expression in caco-2 human colon cancer cells. J Food Res 2:81

    Article  CAS  Google Scholar 

  • SAS Institute (2013) SAS/STAT 9.4 User’s Guide. SAS Inst. Inc., Cary, NC, USA

  • Sayama T et al (2012) The Sg-1 glycosyltransferase locus regulates structural diversity of triterpenoid saponins of soybean. Plant Cell 24:2123–2138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shibuya M, Nishimura K, Yasuyama N, Ebizuka Y (2010) Identification and characterization of glycosyltransferases involved in the biosynthesis of soyasaponin I in Glycine max. FEBS Lett 584:2258–2264

    Article  CAS  PubMed  Google Scholar 

  • Shiraiwa M, Yamauchi F, Harada K, Okubo K (1990) Inheritance of “Group A saponin” in soybean seed. Agric Biol Chem 54:1347–1352

    CAS  Google Scholar 

  • Shiraiwa M, Harada K, Okubo K (1991a) Composition and content of saponins in soybean seed according to variety, cultivation year and maturity. Agric Biol Chem 55:323–331

    CAS  Google Scholar 

  • Shiraiwa M, Harada K, Okubo K (1991b) Composition and structure of “group B saponin” in soybean seed. Agric Biol Chem 55:911–917

    CAS  PubMed  Google Scholar 

  • Sugano M (2006) Soy in health and disease prevention. CRC Press, New York

    Google Scholar 

  • Suh SK et al (1997) A new soybean variety for sprout with small seed and high yielding “Pungsannamulkong”. Korean J Breed Sci 29:503

    Google Scholar 

  • Sun T, Yan X, Guo W, Zhao D (2014) Evaluation of cytotoxicity and immune modulatory activities of soyasaponin Ab: an in vitro and in vivo study. Phytomedicine 21:1759–1766

    Article  CAS  PubMed  Google Scholar 

  • Sundaramoorthy J et al (2018) Molecular elucidation of a new allelic variation at the Sg-5 gene associated with the absence of group A saponins in wild soybean. PLoS ONE 13:e0192150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takada Y et al (2010) Genetic analysis of variation in sugar chain composition at the C-22 position of group A saponins in soybean, Glycine max (L.) Merrill. Breed Sci 60:3–8

    Article  CAS  Google Scholar 

  • Takada Y et al (2012) Genetic analysis of variations in the sugar chain composition at the C-3 position of soybean seed saponins. Breed Sci 61:639–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takada Y, Sasama H, Sayama T, Kikuchi A, Kato S, Ishimoto M, Tsukamoto C (2013) Genetic and chemical analysis of a key biosynthetic step for soyasapogenol A, an aglycone of group A saponins that influence soymilk flavor. Theor Appl Genet 126:721–731

    Article  CAS  PubMed  Google Scholar 

  • Takahashi Y, Li X-H, Tsukamoto C, Wang K-J (2016) Identification of a novel variant lacking group A soyasaponin in a Chinese wild soybean (Glycine soja Sieb. & Zucc.): implications for breeding significance. Plant Breed 135:607–613

    Article  CAS  Google Scholar 

  • Takahashi Y, Li X-H, Tsukamoto C, Wang K-J (2017) Categories and components of soyasaponin in the Chinese wild soybean (Glycine soja) genetic resource collection. Genet Resour Crop Evol 64:2161–2171

    Article  CAS  Google Scholar 

  • Taniyama T, Nagahama Y, Yoshikawa M, Kitagawa I (1988) Saponin and sapogenol. XLIII: acetyl-soyasaponins A4, A5, and A6, new astringent bisdesmosides of soyasapogenol A, from Japanese soybean, the seeds of glycine max MERRILL. Chem Pharm Bull 36:2829–2839. https://doi.org/10.1248/cpb.36.2829

    Article  CAS  Google Scholar 

  • Tsukamoto C, Yoshiki Y (2006) Soy saponin. In: Sugano M (ed) Soy in health and disease prevention. CRC Press, New York, pp 155–172

    Google Scholar 

  • Tsukamoto C, Kikuchi A, Harada K, Kitamura K, Okubo K (1993) Genetic and chemical polymorphisms of saponins in soybean seed. Phytochemistry 34:1351–1356

    Article  CAS  PubMed  Google Scholar 

  • Tsukamoto C, Kikuchi A, Kudou S, Harada K, Iwasaki T, Okubo K (1994) Genetic-improvement of saponin components in soybean. In: Huang MT, Osawa T, Ho CT, Rosen RT (eds) Food phytochemicals for cancer prevention I: fruits and vegetables, vol 546. Acs Symposium Series. Amer Chemical Soc, Washington, pp 372–379

    Chapter  Google Scholar 

  • Xiao J-X, Huang G-Q, Zhang S-H (2007) Soyasaponins inhibit the proliferation of Hela cells by inducing apoptosis. Exp Toxicol Pathol 59:35–42

    Article  CAS  PubMed  Google Scholar 

  • Yano R et al (2018) Isolation and characterization of the soybean Sg-3 gene that is involved in genetic variation in sugar chain composition at the C-3 position in soyasaponins. Plant Cell Physiol 59:792–805

    Article  PubMed  Google Scholar 

  • Yoshiki Y, Kahara T, Okubo K, Sakabe T, Yamasaki T (2001) Superoxide-and 1, 1-diphenyl-2-picrylhydrazyl radical-scavenging activities of soyasaponin Î2 g related to gallic acid. Biosci Biotechnol Biochem 65:2162–2165

    Article  CAS  PubMed  Google Scholar 

  • Zha L et al (2014) Soyasaponins can blunt inflammation by inhibiting the reactive oxygen species-mediated activation of PI3 K/Akt/NF-kB pathway. PLoS ONE 9:e107655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu X, Jiang H, Li J, Xu J, Fei Z (2016) Anticancer effects of paris saponins by apoptosis and PI3 K/AKT pathway in gefitinib-resistant non-small cell lung cancer. Med Sci Monit Int Med J Exp Clin Res 22:1435

    CAS  Google Scholar 

  • Zhu L, Zhang M, Liu X, Liu H, He Y, Wang B, Ma T (2017a) Evaluation of in vitro antioxidant activities of soyasaponins from soy hypocotyls in human HepG2 cell line. Chem Pap 71:653–660

    Article  CAS  Google Scholar 

  • Zhu XJ, Sun Y-w, Yang Y-h (2017b) Experimental study on the tumor-inhibitory effect of soyasaponins in tumor-bearing mice practical. Prev Med 8:004

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong-Dong Lee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1259 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, C.W., Kulkarni, K.P., Kim, M. et al. Characterization of an EMS-induced soybean mutant with an increased content of Af saponin and a new component Ab-δ in the seed hypocotyl. Euphytica 214, 163 (2018). https://doi.org/10.1007/s10681-018-2242-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-018-2242-z

Keywords

Navigation