Skip to main content

Improving oil quality by altering levels of fatty acids through marker-assisted selection of ahfad2 alleles in peanut (Arachis hypogaea L.)

Abstract

Peanut plays a key role to the livelihood of millions in the world especially in Arid and Semi-Arid regions. Peanut with high oleic acid content aids to increase shelf-life of peanut oil as well as food products and extends major health benefits to the consumers. In peanut, ahFAD2 gene controls quantity of two major fatty acids viz, oleic and linoleic acids. These two fatty acids together with palmitic acid constitute 90% fat composition in peanut and regulate the quality of peanut oil. Here, two ahfad2 alleles from SunOleic 95R were introgressed into ICGV 05141 using marker-assisted selection. Marker-assisted breeding effectively increased oleic acid and oleic to linoleic acid ratio in recombinant lines up to 44% and 30%, respectively as compared to ICGV 05141. In addition to improved oil quality, the recombinant lines also had superiority in pod yield together with desired pod/seed attributes. Realizing the health benefits and ever increasing demand in domestic and international market, the high oleic peanut recombinant lines will certainly boost the economical benefits to the Indian farmers in addition to ensuring availability of high oleic peanuts to the traders and industry.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Allard RW (1960) Principles of plant breeding. Willey, New York

    Google Scholar 

  2. Barkley NA, Chamberlin KDC, Wang ML, Pittman RN (2010) Development of a real-time PCR genotyping assay to identify high oleic acid peanuts (Arachis hypogaea L.). Mol Breed 25(3):541–548. https://doi.org/10.1007/s11032-009-9338-z

    CAS  Article  Google Scholar 

  3. Bera SK, Kamdar JH, Kasundra SV, Ajay BC (2016) Identification of a novel QTL governing resistance to sclerotial stem rot disease in peanut. Australas Plant Pathol 45(6):637–644. https://doi.org/10.1007/s13313-016-0448-x

    Article  Google Scholar 

  4. Bernard PS, Lay MJ, Wittwer CT (1998) Integrated amplification and detection of the C677T point mutation in the methylene tetrahydrofolate reductase gene by fluorescence resonance energy transfer and probe melting curves. Anal Biochem 255(1):101–107. https://doi.org/10.1006/abio.1997.2427

    CAS  Article  PubMed  Google Scholar 

  5. Chen Z, Wang ML, Barkley NA, Pittman RN (2010) A simple allele-specific PCR assay for detecting FAD2 alleles in both A and B genomes of the cultivated peanut for high-oleate trait selection. Plant Mol Biol Rep 28:542–548. https://doi.org/10.1007/s11105-010-0181-5

    CAS  Article  Google Scholar 

  6. Chu Y, Ramos L, Holbrook CC, Ozias-Akins P (2007) Frequency of a loss-of-function mutation in Oleoyl-PC Desaturase (ahFAD2A) in the mini-core of the us peanut germplasm collection. Crop Sci 47(6):2372–2378. https://doi.org/10.2135/cropsci2007.02.0117

    CAS  Article  Google Scholar 

  7. Chu Y, Holbrook CC, Ozias-Akins P (2009) Two alleles of control the high oleic acid trait in cultivated peanut. Crop Sci 49(6):2029–2036. https://doi.org/10.2135/cropsci2009.01.0021

    CAS  Article  Google Scholar 

  8. Chu Y, Wu CL, Holbrook CC, Tillman BL, Person G, Ozias-Akins P (2011) Marker-assisted selection to pyramid nematode resistance and the high oleic trait in peanut. Plant Genome 4(2):110–117. https://doi.org/10.3835/plantgenome2011.01.0001

    CAS  Article  Google Scholar 

  9. FAOSTAT (2014). http://faostat.fao.org. Accessed 12 Apr 2018

  10. Gautami B, Foncéka D, Pandey MK, Moretzsohn MC, Sujay V, Qin H, Hong Y, Faye I, Chen X, BhanuPrakash A, Shah TM, Gowda MV, Nigam SN, Liang X, Hoisington DA, Guo B, Bertioli DJ, Rami JF, Varshney RK (2012) An international reference consensus genetic map with 897 marker loci based on 11 mapping populations for tetraploid groundnut (Arachis hypogaea L.). PLoS ONE 7:41213

    Article  CAS  Google Scholar 

  11. Gorbet DW, Knauft DA (1997) Registration of ‘SunOleic 95R’ peanut. Crop Sci 37(4):1392

    Article  Google Scholar 

  12. IBPGR and ICRISAT (1992) Descriptors for groundnut, 125. International Board for Plant Genetic Resources, Rome and International Crops Research Institute for the Semi-Arid Tropics, Andhra Pradesh. ISBN 92-9043-139-3

  13. IRRI. International Rice Research Institute (2007) Crop Stat for Windows version 7(2), 2007, 3. International Rice Research Institute, Manila

    Google Scholar 

  14. Isleib TG, Young CT, Knauft DA (1996) Fatty acid genotypes of five virginia-type cultivars. Crop Sci 36:556–558

    CAS  Article  Google Scholar 

  15. Jandacek RJ (2017) Linoleic acid: a nutritional quandary. In: Parthasarathy S (ed) Healthcare 5(2):25. https://doi.org/10.3390/healthcare5020025

    Article  PubMed Central  PubMed  Google Scholar 

  16. Janila P, Pandey MK, Shasidhar Y, Variatha MT, Sriswathi M, Khera P, Manohar SS, Nagesh P, Vishwakarma MK, Mishra GP, Radhakrishnan T, Manivannan N, Dobariya KL, Vasanthi RP, Varshney RK (2016) Molecular breeding for introgression of fatty acid desaturase mutant alleles (ahFAD2A and ahFAD2B) enhances oil quality in high and low oil containing peanut genotypes. Plant Sci 242:203–213. https://doi.org/10.1016/j.plantsci.2015.08.013

    CAS  Article  PubMed  Google Scholar 

  17. Johnson S, Saikia N (2008) Fatty acids profile of edible oils and fat in India. Centre for Science and Environment, New Delhi, pp 1–48

    Google Scholar 

  18. Jung S, Swift D, Sengoku E, Patel M, Teule F, Powell G, Moore K, Abbott A (2000a) The high oleate trait in the cultivated peanut (Arachis hypogaea L.) I. Isolation and characterization of two genes encoding microsomal oleoyl-PC desaturases. Mol Gen Genet 263(5):796–805. https://doi.org/10.1007/s004380000244

    CAS  Article  PubMed  Google Scholar 

  19. Jung S, Powell G, Moore K, Abbott A (2000b) The high oleate trait in the cultivated peanut (Arachis hypogaea L.). II. Molecular basis and genetics of the trait. Mol Gen Genet 263(5):806–811. https://doi.org/10.1007/s004380000243

    CAS  Article  PubMed  Google Scholar 

  20. Kavera B, Nadaf HL, Hanchinal RR (2014) Near infrared reflectance spectroscopy (NIRS) for large scale screening of fatty acid profile in peanut (Arachis hypogaea L.). Legume Res 37(3):272–280

    Article  Google Scholar 

  21. Knauft DA, Moore K, Gorbet DW (1993) Further studies on the inheritance of fatty acid composition in peanut. Peanut Sci 20:74–76

    CAS  Article  Google Scholar 

  22. Kratz M, Cullen P, Kannenberg F, Kassner A, Fobker M, Abuja PM, Assmann G, Wahrburg U (2002) Effects of dietary fatty acids on the composition and oxidizability of low density lipoprotein. Eur J Clin Nutr 56:72–81. https://doi.org/10.1038/sj.ejcn.1601288

    CAS  Article  PubMed  Google Scholar 

  23. Lopez Y, Nadaf HL, Smith OD, Connell JP, Reddy AS, Fritz AK (2000) Isolations and characterization of the Δ12 fatty acid desaturase in peanut (Arachis hypogaea L.) and search for polymorphism for the high oleate trait in Spanish market-type lines. Theor Appl Genet 101:1131–1138. https://doi.org/10.1007/s001220051589

    CAS  Article  Google Scholar 

  24. Mace ES, Buhariwalla KK, Buhariwalla HK, Crouch JH (2003) A high-throughput DNA extraction protocol for tropical molecular breeding programs. Plant Mol Biol Rep 21(4):459–460. https://doi.org/10.1007/BF02772596

    Article  Google Scholar 

  25. Mienie CMS, Pretorius AE (2013) Application of marker-assisted selection for ahFAD2A and ahFAD2B genes governing the high-oleic acid trait in South African groundnut cultivars (Arachis hypogaea L.). Afr J Biotechnol 12(27):4283–4289. https://doi.org/10.5897/AJB2012.2976

    CAS  Article  Google Scholar 

  26. Misra JB, Mathur RS (1998) A simple and economic procedure for transmethylation of fatty acids of groundnut oil for analysis by GLC. Int Arachis Newslett 18:40–42

    Google Scholar 

  27. Moore KM, Knauft DA (1989) The inheritance of high oleic acid in peanut. J Hered 80(3):252–253

    Article  Google Scholar 

  28. Mozingo RW, O’keefe SF, Sanders TH, Hendrix KW (2004) Improving shelf life of roasted and salted in shell peanuts using high oleic fatty acid chemistry. Peanut Sci 31(1):40–45. https://doi.org/10.3146/pnut.31.1.0009

    CAS  Article  Google Scholar 

  29. Norden AJ, Gorbet DW, Knauft DA, Young CT (1987) Variability in oil quality among peanut genotypes in the Florida breeding program. Peanut Sci 14(1):7–11. https://doi.org/10.3146/i0095-3679-14-1-3

    CAS  Article  Google Scholar 

  30. O’Byrne DJ, Knauft DA, Shireman RB (1997) Low fat-monounsaturated rich diets containing high-oleic peanuts improve serum lipoprotein profiles. Lipids 32(7):687–695. https://doi.org/10.1007/s11745-997-0088-y

    Article  PubMed  Google Scholar 

  31. O’keefe SF, Wiley VA, Knauft DA (1993) Comparison of oxidative stability of high-and normal-oleic peanut oils. J Am Oil Chem Soc 70(5):489–492. https://doi.org/10.1007/BF02542581

    Article  Google Scholar 

  32. Pandey MK, Monyo E, Ozias-Akins P, Liang X, Guimarães P, Nigam SN, Upadhyaya HD, Janila P, Zhang X, Guo B, Cook DR, Bertioli DJ, Michelmore R, Varshney RK (2012) Advances in Arachis genomics for peanut improvement. Biotechnol Adv 30(3):639–651. https://doi.org/10.1016/j.biotechadv.2011.11.001

    CAS  Article  PubMed  Google Scholar 

  33. Rizzo WB, Watkins PA, Phillips MW, Cranin D, Campbell B, Avigan J (1986) Adre-noleukodystrophy Oleic acid lowers fibroblast saturated C22‐26 fatty acids. Neurology 36(3):357–361. https://doi.org/10.1212/WNL.36.3.357

    CAS  Article  PubMed  Google Scholar 

  34. Sarvamangala C, Gowda MVC, Varshney RK (2011) Identification of quantitative trait loci for protein content, oil content and oil quality for groundnut (Arachis hypogaea L.). Field Crops Res 122(1):49–59. https://doi.org/10.1016/j.fcr.2011.02.010

    Article  Google Scholar 

  35. Simpson CE, Baring MR, Schubert AM, Melouk HA, Black MC, Lopez Y, Keim KA (2003a) Registration of ‘Tamrun OL01’ peanut. Crop Sci 43(6):2298

    Article  Google Scholar 

  36. Simpson CE, Starr JL, Church GT, Burow MD, Paterson AH (2003b) Registration of ‘NemaTAM’ peanut. (Registrations of cultivars). Crop Sci 43(4):1561

    Article  Google Scholar 

  37. Varshney RK, Mohan SM, Gaur PM, Gangarao NVPR, Pandey MK, Bohra A, Sawargaonkar SL, Chitikineni A, Kimurto PK, Janila P, Saxena KB, Fikre A, Sharma M, Rathore A, Pratap A, Tripathi S, Datta S, Chaturvedi SK, Mallikarjuna N, Anuradha G, Babbar A, Choudhary AK, Mhase MB, Bharadwaj CH, Mannur DM, HarerPN Guo B, Liang X, Nadarajan N, Gowda CL (2013) Achievements and prospects of genomics-assisted breeding in three legume crops of the semi-arid tropics. Biotechnol Adv 31(8):1120–1134. https://doi.org/10.1016/j.biotechadv.2013.01.001

    Article  PubMed  Google Scholar 

  38. Varshney RK, Pandey MK, JanilaP Nigam SN, Sudini H, Gowda MVC, Sriswathi M, Radhakrishnan T, Manohar SS, Nagesh P (2014) Marker-assisted introgression of a QTL region to improve rust resistance in three elite and popular varieties of peanut (Arachis hypogaea L.). Theor Appl Genet 127(8):1771–1781. https://doi.org/10.1007/s00122-014-2338-3

    Article  PubMed  PubMed Central  Google Scholar 

  39. Vassiliou EK, Gonzalez A, Garcia C, Tadros JH, Chakraborty G, Toney JH (2009) Oleic acid and peanut oil high in oleic acid reverse the inhibitory effect of insulin production of the inflammatory cytokine TNF-alpha both in vitro and in vivo systems. Lipids Health Dis 8:25. https://doi.org/10.1186/1476-511X-8-25

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Wang CT (2009) Peanut production, trade and utilization peanut science and technology bull. Natl Peanut Agric Ind Res Sys 1(5&6):8–32

    CAS  Google Scholar 

  41. Wang ML, Chen CY, Tonnis B, Barkley NA, Pinnow DL, Pittman RN, Davis J, Holbrook CC, Stalker HT, Pederson GA (2013) Oil, fatty acid, flavonoid, and resveratrol content variability and FAD2A functional SNP genotypes in the US peanut mini-core collection. J Agric Food Chem 61(11):2875–2882. https://doi.org/10.1021/jf305208e

    CAS  Article  PubMed  Google Scholar 

  42. Wang ML, Khera P, Pandey MK, Wang H, Qiao L, Feng S, Tonnis B, Barkley NA, Pinnow D, Holbrook CC, Culbreath AK, Varshney RK, Guo B (2015a) Genetic mapping of QTLs controlling fatty acids provided insights into the genetic control of fatty acid synthesis pathway in peanut (Arachis hypogaea L.). PLoS ONE 10(4):e0119454. https://doi.org/10.1371/journal.pone.0119454

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Wang XZ, Wu Q, Tang YY, Sun QX, Wang CT (2015b) FAD2B from a peanut mutant with high oleic acid content was not completely dysfunctional. Adv Appl Biotechnol 332:265–271. https://doi.org/10.1007/978-3-662-45657-6_28

    Article  Google Scholar 

  44. WHO (2003) Diet, nutrition and the prevention of chronic diseases, WHO technical report series 916, Report of a joint WHO/FAO expert consultation. World Health Organization, Geneva, p 88

    Google Scholar 

  45. Yamaki T, Nagamine I, Fukumoto K, Yano T, Miyahara M, Sakurai H (2005) High oleic peanut oil modulates promotion stage in lung tumorigenesis of mice treated with methyl nitrosourea. Food Sci Technol Res 11(2):231–235. https://doi.org/10.3136/fstr.11.231

    CAS  Article  Google Scholar 

  46. Yu S, Pan L, Yang Q, Min P, Ren Z, Zhang H (2008) Comparison of the delta 12 fatty acid desaturase gene between high-oleic and normal-oleic peanut genotypes. J Genet Genomics 35(11):679–685. https://doi.org/10.1016/S1673-8527(08)60090-9

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the financial support received vide no. 11-2/2010-Pul (TMOP), Govt. of India, Ministry of Agriculture, Department of Agriculture and Cooperation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sandip K. Bera.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 17 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bera, S.K., Kamdar, J.H., Kasundra, S.V. et al. Improving oil quality by altering levels of fatty acids through marker-assisted selection of ahfad2 alleles in peanut (Arachis hypogaea L.). Euphytica 214, 162 (2018). https://doi.org/10.1007/s10681-018-2241-0

Download citation

Keywords

  • Peanut
  • Oleic acid
  • Oil quality
  • Marker-assisted selection (MAS)
  • ahFAD2 gene