, 214:162 | Cite as

Improving oil quality by altering levels of fatty acids through marker-assisted selection of ahfad2 alleles in peanut (Arachis hypogaea L.)

  • Sandip K. BeraEmail author
  • Jignesh H. Kamdar
  • Swati V. Kasundra
  • Pitabas Dash
  • Anil K. Maurya
  • Mital D. Jasani
  • Ajay B. Chandrashekar
  • N. Manivannan
  • R. P. Vasanthi
  • K. L. Dobariya
  • Manish K. Pandey
  • Pasupuleti Janila
  • T. Radhakrishnan
  • Rajeev K. Varshney


Peanut plays a key role to the livelihood of millions in the world especially in Arid and Semi-Arid regions. Peanut with high oleic acid content aids to increase shelf-life of peanut oil as well as food products and extends major health benefits to the consumers. In peanut, ahFAD2 gene controls quantity of two major fatty acids viz, oleic and linoleic acids. These two fatty acids together with palmitic acid constitute 90% fat composition in peanut and regulate the quality of peanut oil. Here, two ahfad2 alleles from SunOleic 95R were introgressed into ICGV 05141 using marker-assisted selection. Marker-assisted breeding effectively increased oleic acid and oleic to linoleic acid ratio in recombinant lines up to 44% and 30%, respectively as compared to ICGV 05141. In addition to improved oil quality, the recombinant lines also had superiority in pod yield together with desired pod/seed attributes. Realizing the health benefits and ever increasing demand in domestic and international market, the high oleic peanut recombinant lines will certainly boost the economical benefits to the Indian farmers in addition to ensuring availability of high oleic peanuts to the traders and industry.


Peanut Oleic acid Oil quality Marker-assisted selection (MAS) ahFAD2 gene 



Authors acknowledge the financial support received vide no. 11-2/2010-Pul (TMOP), Govt. of India, Ministry of Agriculture, Department of Agriculture and Cooperation.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10681_2018_2241_MOESM1_ESM.xlsx (17 kb)
Supplementary material 1 (XLSX 17 kb)


  1. Allard RW (1960) Principles of plant breeding. Willey, New YorkGoogle Scholar
  2. Barkley NA, Chamberlin KDC, Wang ML, Pittman RN (2010) Development of a real-time PCR genotyping assay to identify high oleic acid peanuts (Arachis hypogaea L.). Mol Breed 25(3):541–548. CrossRefGoogle Scholar
  3. Bera SK, Kamdar JH, Kasundra SV, Ajay BC (2016) Identification of a novel QTL governing resistance to sclerotial stem rot disease in peanut. Australas Plant Pathol 45(6):637–644. CrossRefGoogle Scholar
  4. Bernard PS, Lay MJ, Wittwer CT (1998) Integrated amplification and detection of the C677T point mutation in the methylene tetrahydrofolate reductase gene by fluorescence resonance energy transfer and probe melting curves. Anal Biochem 255(1):101–107. CrossRefPubMedGoogle Scholar
  5. Chen Z, Wang ML, Barkley NA, Pittman RN (2010) A simple allele-specific PCR assay for detecting FAD2 alleles in both A and B genomes of the cultivated peanut for high-oleate trait selection. Plant Mol Biol Rep 28:542–548. CrossRefGoogle Scholar
  6. Chu Y, Ramos L, Holbrook CC, Ozias-Akins P (2007) Frequency of a loss-of-function mutation in Oleoyl-PC Desaturase (ahFAD2A) in the mini-core of the us peanut germplasm collection. Crop Sci 47(6):2372–2378. CrossRefGoogle Scholar
  7. Chu Y, Holbrook CC, Ozias-Akins P (2009) Two alleles of control the high oleic acid trait in cultivated peanut. Crop Sci 49(6):2029–2036. CrossRefGoogle Scholar
  8. Chu Y, Wu CL, Holbrook CC, Tillman BL, Person G, Ozias-Akins P (2011) Marker-assisted selection to pyramid nematode resistance and the high oleic trait in peanut. Plant Genome 4(2):110–117. CrossRefGoogle Scholar
  9. FAOSTAT (2014). Accessed 12 Apr 2018
  10. Gautami B, Foncéka D, Pandey MK, Moretzsohn MC, Sujay V, Qin H, Hong Y, Faye I, Chen X, BhanuPrakash A, Shah TM, Gowda MV, Nigam SN, Liang X, Hoisington DA, Guo B, Bertioli DJ, Rami JF, Varshney RK (2012) An international reference consensus genetic map with 897 marker loci based on 11 mapping populations for tetraploid groundnut (Arachis hypogaea L.). PLoS ONE 7:41213CrossRefGoogle Scholar
  11. Gorbet DW, Knauft DA (1997) Registration of ‘SunOleic 95R’ peanut. Crop Sci 37(4):1392CrossRefGoogle Scholar
  12. IBPGR and ICRISAT (1992) Descriptors for groundnut, 125. International Board for Plant Genetic Resources, Rome and International Crops Research Institute for the Semi-Arid Tropics, Andhra Pradesh. ISBN 92-9043-139-3Google Scholar
  13. IRRI. International Rice Research Institute (2007) Crop Stat for Windows version 7(2), 2007, 3. International Rice Research Institute, ManilaGoogle Scholar
  14. Isleib TG, Young CT, Knauft DA (1996) Fatty acid genotypes of five virginia-type cultivars. Crop Sci 36:556–558CrossRefGoogle Scholar
  15. Jandacek RJ (2017) Linoleic acid: a nutritional quandary. In: Parthasarathy S (ed) Healthcare 5(2):25. CrossRefPubMedCentralPubMedGoogle Scholar
  16. Janila P, Pandey MK, Shasidhar Y, Variatha MT, Sriswathi M, Khera P, Manohar SS, Nagesh P, Vishwakarma MK, Mishra GP, Radhakrishnan T, Manivannan N, Dobariya KL, Vasanthi RP, Varshney RK (2016) Molecular breeding for introgression of fatty acid desaturase mutant alleles (ahFAD2A and ahFAD2B) enhances oil quality in high and low oil containing peanut genotypes. Plant Sci 242:203–213. CrossRefPubMedGoogle Scholar
  17. Johnson S, Saikia N (2008) Fatty acids profile of edible oils and fat in India. Centre for Science and Environment, New Delhi, pp 1–48Google Scholar
  18. Jung S, Swift D, Sengoku E, Patel M, Teule F, Powell G, Moore K, Abbott A (2000a) The high oleate trait in the cultivated peanut (Arachis hypogaea L.) I. Isolation and characterization of two genes encoding microsomal oleoyl-PC desaturases. Mol Gen Genet 263(5):796–805. CrossRefPubMedGoogle Scholar
  19. Jung S, Powell G, Moore K, Abbott A (2000b) The high oleate trait in the cultivated peanut (Arachis hypogaea L.). II. Molecular basis and genetics of the trait. Mol Gen Genet 263(5):806–811. CrossRefPubMedGoogle Scholar
  20. Kavera B, Nadaf HL, Hanchinal RR (2014) Near infrared reflectance spectroscopy (NIRS) for large scale screening of fatty acid profile in peanut (Arachis hypogaea L.). Legume Res 37(3):272–280CrossRefGoogle Scholar
  21. Knauft DA, Moore K, Gorbet DW (1993) Further studies on the inheritance of fatty acid composition in peanut. Peanut Sci 20:74–76CrossRefGoogle Scholar
  22. Kratz M, Cullen P, Kannenberg F, Kassner A, Fobker M, Abuja PM, Assmann G, Wahrburg U (2002) Effects of dietary fatty acids on the composition and oxidizability of low density lipoprotein. Eur J Clin Nutr 56:72–81. CrossRefPubMedGoogle Scholar
  23. Lopez Y, Nadaf HL, Smith OD, Connell JP, Reddy AS, Fritz AK (2000) Isolations and characterization of the Δ12 fatty acid desaturase in peanut (Arachis hypogaea L.) and search for polymorphism for the high oleate trait in Spanish market-type lines. Theor Appl Genet 101:1131–1138. CrossRefGoogle Scholar
  24. Mace ES, Buhariwalla KK, Buhariwalla HK, Crouch JH (2003) A high-throughput DNA extraction protocol for tropical molecular breeding programs. Plant Mol Biol Rep 21(4):459–460. CrossRefGoogle Scholar
  25. Mienie CMS, Pretorius AE (2013) Application of marker-assisted selection for ahFAD2A and ahFAD2B genes governing the high-oleic acid trait in South African groundnut cultivars (Arachis hypogaea L.). Afr J Biotechnol 12(27):4283–4289. CrossRefGoogle Scholar
  26. Misra JB, Mathur RS (1998) A simple and economic procedure for transmethylation of fatty acids of groundnut oil for analysis by GLC. Int Arachis Newslett 18:40–42Google Scholar
  27. Moore KM, Knauft DA (1989) The inheritance of high oleic acid in peanut. J Hered 80(3):252–253CrossRefGoogle Scholar
  28. Mozingo RW, O’keefe SF, Sanders TH, Hendrix KW (2004) Improving shelf life of roasted and salted in shell peanuts using high oleic fatty acid chemistry. Peanut Sci 31(1):40–45. CrossRefGoogle Scholar
  29. Norden AJ, Gorbet DW, Knauft DA, Young CT (1987) Variability in oil quality among peanut genotypes in the Florida breeding program. Peanut Sci 14(1):7–11. CrossRefGoogle Scholar
  30. O’Byrne DJ, Knauft DA, Shireman RB (1997) Low fat-monounsaturated rich diets containing high-oleic peanuts improve serum lipoprotein profiles. Lipids 32(7):687–695. CrossRefPubMedGoogle Scholar
  31. O’keefe SF, Wiley VA, Knauft DA (1993) Comparison of oxidative stability of high-and normal-oleic peanut oils. J Am Oil Chem Soc 70(5):489–492. CrossRefGoogle Scholar
  32. Pandey MK, Monyo E, Ozias-Akins P, Liang X, Guimarães P, Nigam SN, Upadhyaya HD, Janila P, Zhang X, Guo B, Cook DR, Bertioli DJ, Michelmore R, Varshney RK (2012) Advances in Arachis genomics for peanut improvement. Biotechnol Adv 30(3):639–651. CrossRefPubMedGoogle Scholar
  33. Rizzo WB, Watkins PA, Phillips MW, Cranin D, Campbell B, Avigan J (1986) Adre-noleukodystrophy Oleic acid lowers fibroblast saturated C22‐26 fatty acids. Neurology 36(3):357–361. CrossRefPubMedGoogle Scholar
  34. Sarvamangala C, Gowda MVC, Varshney RK (2011) Identification of quantitative trait loci for protein content, oil content and oil quality for groundnut (Arachis hypogaea L.). Field Crops Res 122(1):49–59. CrossRefGoogle Scholar
  35. Simpson CE, Baring MR, Schubert AM, Melouk HA, Black MC, Lopez Y, Keim KA (2003a) Registration of ‘Tamrun OL01’ peanut. Crop Sci 43(6):2298CrossRefGoogle Scholar
  36. Simpson CE, Starr JL, Church GT, Burow MD, Paterson AH (2003b) Registration of ‘NemaTAM’ peanut. (Registrations of cultivars). Crop Sci 43(4):1561CrossRefGoogle Scholar
  37. Varshney RK, Mohan SM, Gaur PM, Gangarao NVPR, Pandey MK, Bohra A, Sawargaonkar SL, Chitikineni A, Kimurto PK, Janila P, Saxena KB, Fikre A, Sharma M, Rathore A, Pratap A, Tripathi S, Datta S, Chaturvedi SK, Mallikarjuna N, Anuradha G, Babbar A, Choudhary AK, Mhase MB, Bharadwaj CH, Mannur DM, HarerPN Guo B, Liang X, Nadarajan N, Gowda CL (2013) Achievements and prospects of genomics-assisted breeding in three legume crops of the semi-arid tropics. Biotechnol Adv 31(8):1120–1134. CrossRefPubMedGoogle Scholar
  38. Varshney RK, Pandey MK, JanilaP Nigam SN, Sudini H, Gowda MVC, Sriswathi M, Radhakrishnan T, Manohar SS, Nagesh P (2014) Marker-assisted introgression of a QTL region to improve rust resistance in three elite and popular varieties of peanut (Arachis hypogaea L.). Theor Appl Genet 127(8):1771–1781. CrossRefPubMedPubMedCentralGoogle Scholar
  39. Vassiliou EK, Gonzalez A, Garcia C, Tadros JH, Chakraborty G, Toney JH (2009) Oleic acid and peanut oil high in oleic acid reverse the inhibitory effect of insulin production of the inflammatory cytokine TNF-alpha both in vitro and in vivo systems. Lipids Health Dis 8:25. CrossRefPubMedPubMedCentralGoogle Scholar
  40. Wang CT (2009) Peanut production, trade and utilization peanut science and technology bull. Natl Peanut Agric Ind Res Sys 1(5&6):8–32Google Scholar
  41. Wang ML, Chen CY, Tonnis B, Barkley NA, Pinnow DL, Pittman RN, Davis J, Holbrook CC, Stalker HT, Pederson GA (2013) Oil, fatty acid, flavonoid, and resveratrol content variability and FAD2A functional SNP genotypes in the US peanut mini-core collection. J Agric Food Chem 61(11):2875–2882. CrossRefPubMedGoogle Scholar
  42. Wang ML, Khera P, Pandey MK, Wang H, Qiao L, Feng S, Tonnis B, Barkley NA, Pinnow D, Holbrook CC, Culbreath AK, Varshney RK, Guo B (2015a) Genetic mapping of QTLs controlling fatty acids provided insights into the genetic control of fatty acid synthesis pathway in peanut (Arachis hypogaea L.). PLoS ONE 10(4):e0119454. CrossRefPubMedPubMedCentralGoogle Scholar
  43. Wang XZ, Wu Q, Tang YY, Sun QX, Wang CT (2015b) FAD2B from a peanut mutant with high oleic acid content was not completely dysfunctional. Adv Appl Biotechnol 332:265–271. CrossRefGoogle Scholar
  44. WHO (2003) Diet, nutrition and the prevention of chronic diseases, WHO technical report series 916, Report of a joint WHO/FAO expert consultation. World Health Organization, Geneva, p 88Google Scholar
  45. Yamaki T, Nagamine I, Fukumoto K, Yano T, Miyahara M, Sakurai H (2005) High oleic peanut oil modulates promotion stage in lung tumorigenesis of mice treated with methyl nitrosourea. Food Sci Technol Res 11(2):231–235. CrossRefGoogle Scholar
  46. Yu S, Pan L, Yang Q, Min P, Ren Z, Zhang H (2008) Comparison of the delta 12 fatty acid desaturase gene between high-oleic and normal-oleic peanut genotypes. J Genet Genomics 35(11):679–685. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Indian Council of Agricultural Research-Directorate of Groundnut Research (ICAR-DGR)JunagadhIndia
  2. 2.National Pulses Research Center, Tamil Nadu Agricultural University (TNAU)PudukkottaiIndia
  3. 3.Regional Agricultural Research Station, Acharya NG Ranga Agricultural University (ANGRAU)TirupatiIndia
  4. 4.Main Oilseeds Research Station, Junagadh Agricultural University (JAU)JunagadhIndia
  5. 5.International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)HyderabadIndia

Personalised recommendations