Skip to main content
Log in

Assessment of drought tolerance among Algerian maize populations from oases of the Saharan

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Maize (Zea mays L.) is severely affected by drought and this challenge is expected to worsen with climate change. One of the most promising solutions is breeding for drought tolerance that requires the identification of sources of drought tolerance. Eighteen maize populations from the Algerian Sahara were evaluated along with three European and two American checks in two Algerian locations under drought and control conditions. Under drought conditions, Algerian populations had large variability for most traits and the populations BTM and LOM out yielded most checks. The ratio yield under drought/yield under control conditions was 65.90, 65.33, and 53.23% for BTM, TAO and LOM, respectively. These populations maintained also yield components such as grain weight, ear length, number of kernel rows, ears per plant, and leaf area under stress conditions; furthermore, they have reduced leaf rolling. TAO and BTM presented the highest relative water content, and LOM had the highest proline content. Algerian populations can be considered as a novel source of favorable alleles for drought tolerance and show a wide variety of mechanisms of response to drought.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ASI:

Anthesis-silking interval

RWC:

Relative water content

dw:

Dry weight

GLM:

General linear model

LSD:

Least significant difference

References

  • Aci MM, Revilla P, Morsli A, Djemel A, Belalia N, Kadri Y, Khelifi-Saloui M, Ordás B, Khelifi L (2013) Genetic diversity in Algerian maize (Zea mays L.) landraces using SSR markers. Maydica 58:304–310

    Google Scholar 

  • Andjelkovic V, Kravic N, Babic V, Ignjatovic-Micic D, Dumanovic Z, Vancetovic J (2014) Estimation of drought tolerance among maize landraces from mini-core collection. Genetika 3:775–788

    Article  Google Scholar 

  • Araus JL, Serret MD, Edmeades GO (2012) Phenotyping maize for adaptation to drought. Front Physiol 3:1–20

    Article  Google Scholar 

  • Babic M, Andelkovic V, Drinic Mladenovic S, Konstantinov K (2011) The conventional and contemporary technologies in maize (Zea mays L) breeding at Maize Research Institut Zemun Polje. Maydica 56:155–163

    Google Scholar 

  • Badu-Apraku B, Fakorede MAB, Oyekunle M, Akinwale OK (2016) Genetic gains in gain yield under nitrogen stress following three decades of breeding for drought tolerance and Striga resistance in early maturing maize. J Agric Sci 154:647–661

    Article  CAS  Google Scholar 

  • Bai LP, Sui FG, Ge TD, Sun ZH, Lu YY, Zhou GS (2006) Effect of soil drought stress on leaf water status, membrane permeability and enzymatic antioxidant system of maize. Pedosphere 16:326–332

    Article  CAS  Google Scholar 

  • Bänziger M, Araus JL (2007) Recent advances in breeding maize for drought and salinity stress tolerance. In: Jenks MA, Hasegawa PM, Jain SM (eds) Advances in molecular breeding toward drought and salt tolerant crops. Springer, Dordrecht, pp 587–601

    Chapter  Google Scholar 

  • Banziger M, Edmeades GO, Lafitte HR (1999) Selection for drought tolerance increases maize yields across a range of nitrogen levels. Crop Sci 39:1035–1040

    Article  Google Scholar 

  • Barrs HD, Weatherley PE (1962) A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust J Biol Sci 15:413–428

    Article  Google Scholar 

  • Betran FJ, Beck D, Banziger M, Edmeades GO (2003) Genetic analysis of inbred and hybrid grain yield under stress and nonstress environments in tropical maize. Crop Sci 43:807–817

    Article  Google Scholar 

  • Bolaños J, Edmeades GO (1993) Eight cycles of selection for water stress tolerance in lowland tropical maize. I. Responses in grain yield, biomass and radiation utilization. Field Crop Res 31:233–252

    Article  Google Scholar 

  • Bolaños J, Edmeades GO (1996) The importance of the anthesis-silking interval in breeding for drought tolerance in tropical maize. Field Crops Res 48:65–80

    Article  Google Scholar 

  • Bruce WB, Edmeades GO, Barker TC (2002) Molecular and physiological approaches to maize improvement for drought tolerance. J Exp Bot 53:13–25

    Article  PubMed  CAS  Google Scholar 

  • Campos H, Cooper M, Habben JE, Edmeades GO, Schussler JR (2004) Improving drought tolerance in maize: a view from industry. Field Crops Res 90:19–34

    Article  Google Scholar 

  • Dallard J, Evgenidis G, Álvarez A (2003) Evaluation de lacore collection européenne de maïs: valorisation de l’eau. In: Rencontre Européenne sur la diversité des populations de maïs, 12–13 juin 2003, pp. 41–45. Montpellier, France

  • Djemel A, Revilla P, Hanifi-Mekliche L, Malvar RA, Álvarez A, Khelifi L (2012) Maize (Zea mays L.) from the Saharan oasis: adaptation to temperate areas and agronomic performance. Genet Res Crop Evol 59:1493–1504

    Article  Google Scholar 

  • Ferus P, Arkosiova M (2001) Variability of chlorophyll content under fluctuating environment. Acta Fytotech Zootech 4:5–9

    Google Scholar 

  • Fisher M, Tsedeke Abate Y, Lunduka RW, Asnake W, Alemayehu Y, Madulu RB (2015) Drought tolerant maize for farmer adaptation to drought in sub-Saharan Africa: determinants of adoption in eastern and southern Africa. Clim Change 133:283–299

    Article  Google Scholar 

  • Gouesnard B, Zanetto A, Welcker C (2016) Identification of adaptation traits to drought in collections of maize landraces from southern Europe and temperate regions. Euphytica 209:565–584

    Article  Google Scholar 

  • Hawtin G, Iwanaga M, Hodgkin T (1996) Genetic resources in breeding for adaptation. Euphytica 92:255–266

    Article  Google Scholar 

  • Herrero MP, Johnson RR (1981) Drought stress and its effects on maize reproduction system. Crop Sci 21:105–110

    Article  Google Scholar 

  • Institute SAS (2005) The SAS system, SAS Online Doc HTML format version 9. SAS Inst, Cary

    Google Scholar 

  • IPCC (2012) Summary for policymakers. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G-K, Allen SK, Tignor M, Midgley PM (eds) Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups I and II of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, New York

    Google Scholar 

  • Lu Y, Hao Z, Xie C, Crossa J, Araus JL, Gao S, Vivek SB, Magorokosho C, Mugo S, Makumbi D, Taba S, Pan G, Li X, Rong T, Zhang S, Xua Y (2011) Large-scale screening for maize drought resistance using multiple selection criteria evaluated under water-stressed and well-watered environments. Field Crops Res 124:37–45

    Article  Google Scholar 

  • Makumbi D, Betran JF, Banziger M, Ribaut JM (2011) Combining ability, heterosis and genetic diversity in tropical maize (Zea mays L.) under stress and non-stress conditions. Euphytica 180:143–162

    Article  Google Scholar 

  • Monneveux P, Nemmar M (1986) Contribution à l’étude de la résistance à la sécheresse chez le blé tendre (Triticum aestivum L.) et chez le blé dur (Triticum durum Desf.). Etude de l’accumulation de la proline au cours du cycle de développement. Agronomie 6:583–590

    Article  Google Scholar 

  • Monneveux P, Sánchez C, Tiessen A (2008) Future progress in drought tolerance in maize needs new secondary traits and cross combinations. J Agric Sci 146:287–300

    Article  Google Scholar 

  • NeSmith DS, Ritchie JT (1992) Maize (Zea mays L.) response to a severe soil water-deficit during grain-filling. Field Crops Res 29:23–35

    Article  Google Scholar 

  • Prasanna BM (2012) Diversity in global maize germplasm: characterization and utilization. Indian Acad Sci 35:843–855

    Google Scholar 

  • Rahel-Bouziane H, Feliachi K (2006) Le maïs (Zea mays L.) « Kbal». INRAA 4:26–27

    Google Scholar 

  • Rodriguez VM, Malvar RA, Butron A, Ordas A, Revilla P (2007a) Maize populations as sources of favorable allele to improve cold tolerance hybrids. Crop Sci 47:1779–1786

    Article  Google Scholar 

  • Rodriguez VM, Butron A, Sandoya G, Ordas A, Revilla P (2007b) Combining maize base germplasm for cold tolerance breeding. Crop Sci 47:1467–1474

    Article  Google Scholar 

  • Rojas O, Vrieling A, Rembold F (2011) Assessing drought probability for agricultural areas in Africa with coarse resolution remote sensing imagery. Remote Sens Environ 115:343–352

    Article  Google Scholar 

  • Saglam A, Kadioglu A, Demiralay M, Terzi R (2014) Leaf rolling reduces photosynthetic loss in maize under severe drought. Acta Bot Croat 73:315–332

    Article  CAS  Google Scholar 

  • Samayoa LF, Malvar RA, Moreno-Gonzalez L, Ordas A, Revilla P (2016) Evaluation of White maize populations for quality and agronomic performance. Crop Sci 56:1173–1178

    Article  CAS  Google Scholar 

  • Setter TL, Flannigan BA, Melkonian J (2001) Loss of kernel set due to water deficit and shade in maize: carbohydrate supplies, abscisic acid, and cytokinins. Crop Sci 41:1530–1540

    Article  CAS  Google Scholar 

  • Shi W, Tao F (2014) Vulnerability of African maize yield to climate change and variability during 1961–2010. Food Sec 6:471–481

    Article  Google Scholar 

  • Slafer GA, Otegui ME (2000) Physiological bases for maize improvement. Haworth Press, Incorporated, Binghamthon

    Google Scholar 

  • Steel RDG, Torrie JH, Dickey DA (1997) Principles and procedures in statistics: a biometrical approach, 3rd edn. McGraw Hill, New York

    Google Scholar 

  • Tabu I, Munyiri S, Pathak R (2011) Phenotypic characterization of local maize landraces for drought tolerance in Kenya. In: Bationo A, Waswa B, Okeyo J, Maina F, Kihara J (eds) Innovations as key to the green revolution in Africa. Springer, Dordrecht

    Google Scholar 

  • Ul-Hassan M, Qayyum A, Razzaq A, Ahmad M, Ahmood I, Ullah Khan S, Matthew AJ (2013) Evaluation of maize cultivars for drought tolerance based on physiological traits associated with cell wall plasticity. Jokull J 7:466–478

    Google Scholar 

  • Wegary D, Labuschagne M, Vivek B (2012) The influence of water stress on yield and related characteristics in inbred quality protein maize lines and their hybrid progeny. In: Ismail MD, Mofizur R (eds) Water Stress. pp. 199–218

  • Witt S, Galicia L, Lisec J, Cairns J, Tiessen A, Araus JL, Palacios-Rojasand N, Fernie ARR (2012) Metabolic and phenotypic responses of greenhouse-grown maize hybrids to experimentally controlled drought stress. Mol Plant 5:401–417

    Article  PubMed  CAS  Google Scholar 

  • Ziyomo C, Bernardo R (2013) Drought Tolerance in maize: indirect selection through secondary traits versus genomewide selection. Crop Sci 52:1269–1275

    Article  Google Scholar 

Download references

Acknowledgements

We thank Prof. A. Ordás for his advice in choosing the temperate varieties and for providing the improved composites. This project was financed by the Spanish National Plan for Research and Development (Project Code AGL2013-48852-C3-1-R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Djemel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 109 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djemel, A., Cherchali, F.Z., Benchikh-Le-Hocine, M. et al. Assessment of drought tolerance among Algerian maize populations from oases of the Saharan. Euphytica 214, 149 (2018). https://doi.org/10.1007/s10681-018-2225-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-018-2225-0

Keywords

Navigation