Skip to main content

Association mapping identifies loci for canopy temperature under drought in diverse soybean genotypes

Abstract

Drought stress is a global constraint for crop production, and improving crop tolerance to drought is of critical importance. Because transpiration cools a crop canopy, a cool canopy under drought indicates a genotype still has access to soil moisture. Because measurements of canopy temperature may be increased in scale in field environments, it is particularly attractive for large-scale, phenotypic evaluations. Our objectives were to identify genomic regions associated with canopy temperature (CT) and to identify extreme genotypes for CT. A diverse panel consisting of 345 maturity group IV soybean accessions was evaluated in three environments for CT. Within each environment CT was normalized (nCT) on a scale from 0 to 1. A set of 31,260 polymorphic single nucleotide polymorphisms (SNPs) with a minor allele frequency ≥ 5% was used for association mapping of nCT. Association mapping identified 52 SNPs significantly associated with nCT, and these SNPs likely tagged 34 different genomic regions. Averaged across all environments, eight genomic regions showed significant associations with nCT. Several genes in the identified genomic regions had reported functions related to transpiration or water acquisition including root development, response to abscisic acid, water deprivation, stomatal complex morphogenesis, and signal transduction. Fifteen of the SNPs associated with nCT were coincident with SNPs for canopy wilting. Favorable alleles from significant SNPs may be an important resource for pyramiding genes, and several genotypes were identified as sources of drought-tolerant alleles that could be used in breeding programs for improving drought tolerance.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

AAE:

Across all environments

BLUP:

Best unbiased linear prediction

CT:

Canopy temperature

GEBV:

Genomic estimated breeding value

GWAM:

Genome-wide association mapping

LD:

Linkage disequilibrium

MAF:

Minor allele frequency

nCT:

Normalized canopy temperature

QTLs:

Quantitative trait loci

SNPs:

Single nucleotide polymorphisms

TAGV:

True additive genetic value

References

  • Abdel-Haleem H, Carter TE Jr, Purcell LC, King CA, Ries LL, Chen PC, Schapaugh W Jr, Sinclair TR, Boerma HR (2012) Mapping of quantitative trait loci for canopy-wilting trait in soybean [Glycine max (L) Merr]. Theor Appl Genet 125:837–846

    Article  PubMed  CAS  Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements. Irrigation and Drainage Paper No 56, Food and Agriculture Organization of the United Nations, Rome

  • Araus JL, Cairns JE (2014) Field high-throughtput phenotyping: the new crop breeding frontier. Trends Plant Sci 19:52–61

    Article  PubMed  CAS  Google Scholar 

  • Bai H, Purcell LC (2018) Aerial canopy temperature differences between fast-slow wilting soybean genotypes. J Agron Crop Sci 204:243–251

    Article  Google Scholar 

  • Blackman PG, Davis WJ (1985) Root to shoot communication in maize plants of the effects of soil drying. J Exp Bot 36:39–48

    Article  Google Scholar 

  • Blum A (2005) Drought resistance, water-use efficiency, and yield potential-are they compatible, dissonant, or mutually exclusive? Aust J Agric Res 56:1159–1168

    Article  Google Scholar 

  • Bondari K (2003) Statistical analysis of genotype x environment interaction in agricultural research. Paper SD15, SESUG: The Proceedings of the SouthEast SAS Users Group, St Pete Beach

  • Carter TE Jr, De Souza PI, Purcell LC (1999) Recent advances in breeding for drought and aluminum resistance in soybean. In: Kauffman H (ed) Proceedings of the sixth world soybean research conference, Chicago. Superior Printing, Champaign, pp 106–125

  • Chapman SC, Merz T, Chan A, Jackway P, Hrabar S, Dreccer MF, Holland E, Zheng B, Ling TJ, Jimenez-Berni J (2014) Pheno-copter: a low-altitude, autonomous remote-sensing robotic helicopter for high-throughput field-based phenotyping. Agronomy 4:279–301

    Article  Google Scholar 

  • Charlson DV, Bhatnagar S, King CA, Ray JD, Sneller CH, Carter TE Jr, Purcell LC (2009) Polygenic inheritance of canopy wilting in soybean [Glycine max (L) Merr]. Theor Appl Genet 119:587–594

    Article  PubMed  Google Scholar 

  • Clark SA, van der Werf J (2013) Genomic best linear unbiased prediction (gBLUP) for the estimation of genomic breeding values. Genome-Wide Association Studies and Genomic Prediction. Springer, Berlin, pp 321–330

    Chapter  Google Scholar 

  • Cornic G, Massacci A (1996) Leaf photosynthesis under drought stress. In: Baker NR (ed) Photosynthesis and the environment. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Covarrubias-Pazaran G (2016) Genome-assisted prediction of quantitative traits using the R package sommer. PLoS ONE 11:e0156744. https://doi.org/10.1371/journal.pone.0156744

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dhanapal AP, Ray JD, Singh SK, Hoyos-Villegas V, Smith JR, Purcell LC, King CA, Fritsch FB (2015a) Association mapping of total carotenoids in diverse soybean genotypes based on leaf extracts and high-throughput canopy spectral reflectance measurements. PLoS ONE 10:e0137213. https://doi.org/10.1371/journal.pone.0137213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dhanapal AP, Ray JD, Singh SK, Hoyos-Villegas V, Smith JR, Purcell LC, King CA, Cregan PB, Song Q, Fritsch FB (2015b) Genome-wide association study (GWAM) of carbon isotope ratio (δ13C) in diverse soybean [Glycine max (L) Merr] genotypes. Theor Appl Genet 128:73–91

    Article  PubMed  CAS  Google Scholar 

  • Dhanapal AP, Ray JD, Singh SK, Hoyos-Villegas V, Smith JR, Purcell LC, King CA, Fritsch FB (2015c) Genome-wide association analysis of diverse soybean genotypes reveals novel markers for nitrogen traits. Plant Genome-US 8:3. https://doi.org/10.3835/plantgenome2014.11.0086

    CAS  Article  Google Scholar 

  • Dixit S, Huang BE, Sta Cruz MT, Maturan PT, Ontoy JCE, Kumar A (2014) QTLs for tolerance of drought and breeding for tolerance of abiotic and biotic stress: an integrated approach. PLoS ONE 9:e109574. https://doi.org/10.1371/journal.pone.0109574

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Douglas I, Alam K, Maghenda M, McDonnell Y, McLean L, Campbell J (2008) Unjust waters: climate change, flooding and the urban poor in Africa. Environ Urban 20:187–205

    Article  Google Scholar 

  • Du W, Yu D, Fu S (2009) Detection of quantitative trait loci for yield and drought tolerance traits in soybean using a recombinant inbred line population. J Integr Plant Biol 51:868–878

    Article  PubMed  CAS  Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Longmans Green, Harlow

    Google Scholar 

  • Feng X, Porporato A, Rodriguz-Iturbe I (2013) Changes in rainfall seasonality in the tropics. Nat Clim Change 3:811–815

    Article  Google Scholar 

  • Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, Connell C, Ray DK, West PC, Balzer C, Bennett EM, Carpenter SR, Hill J, Monfreda C, Polasky S, Rockström J, Sheehan J, Siebert S, Tilman D, Zaks DPM (2011) Solutions for a cultivated planet. Nature 478:337–342. https://doi.org/10.1038/nature10452

    Article  PubMed  CAS  Google Scholar 

  • Gollan T, Passioura JB, Munns R (1986) Soil water status affects the stomatal conductance of fully turgid wheat and sunflower leaves. Aust J Plant Physiol 13:459–464

    Article  Google Scholar 

  • Guilioni L, Jones HG, Leinonen I, Lhomme JP (2008) On the relationships between stomatal resistance and leaf temperatures in thermography. Agric For Meteorol 148:1908–1912

    Article  Google Scholar 

  • Hao D, Cheng H, Yin Z, Cui S, Zhang D, Wang H, Yu D (2012) Identification of single nucleotide polymorphisms and haplotypes associated with yield and yield components in soybean (Glycine max) landraces across multiple environments. Theor Appl Genet 124:447–458

    Article  PubMed  CAS  Google Scholar 

  • Hwang E, Song Q, Jia G, Specht JE, Hyten DL, Costa J, Cregan PB (2014) A genome-wide association study of seed protein and oil content in soybean. PLoS Genet 15:1. https://doi.org/10.1186/1471-2164-15-1

    CAS  Article  Google Scholar 

  • Hwang S, King CA, Chen P, Ray JD, Cregan PB, Carter TE Jr, Li Z, Abdel-Haleem H, Matson KW, Schapaugh W Jr, Purcell LC (2015) Confirmation of delayed canopy wilting QTLs from multiple soybean mapping populations. Theor Appl Genet 128:2047–2065

    Article  PubMed  Google Scholar 

  • Hwang S, King CA, Chen P, Ray JD, Cregan PB, Carter TE Jr, Li Z, Abdel-Haleem H, Matson KW, Schapaugh W Jr, Purcell LC (2016) Meta-analysis to refine map position and reduce confidence intervals for delayed-canopy-wilting QTLs in soybean. Mol Breed 36:91. https://doi.org/10.1007/s11032-016-0516-5

    Article  CAS  Google Scholar 

  • Jackson RD, Idso SB, Reginato RJ, Pinter PJ Jr (1981) Canopy temperature as a crop water stress indicator. Water Resour Res 17:1133–1138. https://doi.org/10.1029/WR017i004p01133

    Article  Google Scholar 

  • Jones HG (1979) Stomatal behaviour and breeding for drought resistance. In: Mussell H, Staples R (eds) Stress physiology in crop plants. Wiley, New York, pp 408–428

    Google Scholar 

  • Jones HG, Serraj R, Loveys BR, Xiong LZ, Wheaton A, Price AH (2009) Thermal infrared imaging of crop canopies for the remote diagnosis and quantification of plant responses to water stress in the field. Funct Plant Biol 36:978–989

    Article  Google Scholar 

  • Kaler AS, Dhanapal AP, Ray JD, King CA, Fritschi FB, Purcell LC (2017a) Genome-wide association mapping of carbon isotope and oxygen isotope ratios in diverse soybean genotypes. Crop Sci 57:1–16. https://doi.org/10.2135/cropsci2017030160

    Article  Google Scholar 

  • Kaler AS, Ray JD, King CA, Schapaugh WT, Purcell LC (2017b) Genome-wide association mapping of canopy wilting in diverse soybean genotypes. Theor Appl Genet 130:2203–2217

    Article  PubMed  CAS  Google Scholar 

  • Kaler AS, Ray JD, Schapaugh WT, Davies MK, King CA, Purcell LC (2018) Association mapping identifies loci for canopy coverage in diverse soybean genotypes. Mol Breed 38:50. https://doi.org/10.1007/s11032-018-0810-5

    Article  CAS  Google Scholar 

  • King CA, Purcell LC, Brye KR (2009) Differential wilting among soybean genotypes in response to water deficit. Crop Sci 49:290–298

    Article  Google Scholar 

  • Leport L, Turner NC, French RJ, Barr MD, Duda R, Davies SL, Tennant D, Siddique KHM (1999) Physiological responses of chickpea genotypes to terminal drought in a Mediterranean-type environment. Eur J Agron 11:279–291

    Article  Google Scholar 

  • Lim CW, Park C, Kim JH, Joo H, Hong E, Lee SC (2017) Pepper CaREL1, an ubiquitin E3 ligase, regulates drought tolerance via the ABA-signalling pathway. Sci Rep. https://doi.org/10.1038/s41598-017-00490-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu H, Zou G, Liu G, Hu S, Li M, Yu X, Mei H, Luo L (2005) Correlation analysis and QTL identification for canopy temperature, leaf water potential and spikelet fertility in rice under contrasting moisture regimes. Chin Sci Bull 50:317–326

    CAS  Google Scholar 

  • Liu Y, Subhash C, Yan J, Song C, Zhao J, Li J (2011) Maize leaf temperature responses to drought: thermal imaging and quantitative trait loci (QTL) mapping. Environ Exper Bot 71:158–165

    Article  Google Scholar 

  • Liu X, Huang M, Fan B, Buckler ES, Zhang Z (2016) Iterative usage of fixed and random effect models for powerful and efficient genome-wide association studies. PLoS Genet 12:e1005767. https://doi.org/10.1371/journal.pgen.1005767

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J, Ioannidis JPA, Hirschhorn JN (2008) Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet 9:356–369. https://doi.org/10.1038/nrg2344

    Article  PubMed  CAS  Google Scholar 

  • Merlot S, Mustilli A-C, Genty B, North H, Lefebvre V, Sotta B, Vavasseur A, Giraudat J (2002) Use of infrared thermal imaging to isolate Arabidopsis mutants defective in stomatal regulation. Plant J 30:601–609

    Article  PubMed  CAS  Google Scholar 

  • Money D, Gardner K, Migicovsky Z, Schwaninger H, Zhong GY, Myles S (2015) LinkImpute: fast and accurate genotype imputation for non-model organisms. G3-Genes Genom Genet 5:23383–23390

    Google Scholar 

  • Nordborg M, Tavaré S (2002) Linkage disequilibrium: what history has to tell us. Trends Genet 18:83–90

    Article  PubMed  CAS  Google Scholar 

  • O’Shaughnessy SA, Evett SR, Colaizzi PD, Howell TA (2011) Using radiation thermography and thermometry to evaluate crop water stress in soybean and cotton. Agric Water Manag 98:1523–1535

    Article  Google Scholar 

  • Oya T, Nepomuceno AL, Numaier N, Farias JRB, Tobita SS, Ito S (2004) Drought tolerance characteristics of Brazilian cultivars—evaluation and characterization of drought tolerance of various Brazilian soybean cultivars in the field. Plant Prod Sci 7:129–137

    Article  Google Scholar 

  • Piepho HP (2000) A mixed-model approach to mapping quantitative trait loci in barley on the basis of multiple environment data. Genetics 156:2043–2050

    PubMed  PubMed Central  CAS  Google Scholar 

  • Purcell LC, Edwards JT, Brye KR (2007) Soybean yield and biomass responses to cumulative transpiration: questioning widely held beliefs. Field Crop Res 101:10–18

    Article  Google Scholar 

  • Ray DK, Mueller ND, West PC, Foley JA (2013) Yield trends are insufficient to double global crop production by 2050. PLoS ONE 8:e66428. https://doi.org/10.1371/journalpone0066428

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ray JD, Dhanapal AP, Singh SK, Hoyos-Villegas V, Smith JR, Purcell LC, King CA, Boykin D, Cregan PB, Song Q, Fritschi FB (2015) Genome-wide association study of ureide concentration in diverse maturity group IV soybean [Glycine max (L) Merr] accessions. G3-Genes Genom Genet 5:2391–2403. https://doi.org/10.1534/g3.115.021774

    CAS  Article  Google Scholar 

  • Rebetzke GJ, Condon AG, Rattey AR, Farquhar GD, Richards RA (2013) Genomic regions for canopy temperature and their genetic association with stomatal conductance and grain yield in bread wheat (Triticum aestivum L). Funct Plant Biol 40:14–26

    Article  CAS  Google Scholar 

  • Ries LL, Purcell LC, Carter TE Jr, Edwards JT, King CA (2012) Physiological traits contributing to differential canopy wilting in soybean under drought. Crop Sci 52:272–281

    Article  Google Scholar 

  • Risch N, Merikangas K (1996) The future of genetic studies of complex human diseases. Science 273:1516–1517

    Article  PubMed  CAS  Google Scholar 

  • Salmerόn M, Gbur EE, Bourland FM, Buehring NW, Earnest L, Fritschi FB, Golden BR, Hathcoat D, Lofton J, Miller TD, Neely C, Shannon G, Udeigwe TK, Verbree DA, Vories ED, Wiebold WJ, Purcell LC (2016) Yield response to planting date among soybean maturity groups for irrigated production in the US Midsouth. Crop Sci 56:747–759

    Article  CAS  Google Scholar 

  • SAS Institute (2013) The SAS system for windows version 93. SAS Inst Inc, Cary

    Google Scholar 

  • Song Q, Hyten DL, Jia G, Quigley CV, Fickus EW, Nelson RL, Cregan PB (2013) Development and evaluation of SoySNP50 K, a high-density genotyping array for soybean. PLoS ONE 8:e54985. https://doi.org/10.1371/journal.pone.0054985

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Syvanen AC (2005) Toward genome-wide SNP genotyping. Nat Genet 37:5–10

    Article  CAS  Google Scholar 

  • Tuberosa R, Salvi S, Giuliani S, Sanguineti MC, Bellotti M, Conti S, Landi P (2007) Genome-wide approaches to investigate and improve maize response to drought. Crop Sci 47:120–141

    Article  Google Scholar 

  • Wen Z, Tan R, Yuan J, Bales C, Du W (2014) Genome-wide association mapping of quantitative resistance to sudden death syndrome in soybean. BMC Genom 15:809. https://doi.org/10.1186/1471-2164-15-809

    Article  CAS  Google Scholar 

  • Yousfi S, Kellas N, Saidi L, Benlakehal Z, Chaou L, Siad D, Herda F, Karrou M, Vergara O, Gracia A, Araus JL, Serret MD (2016) Comparative performance of remote sensing methods in assessing wheat performance under Mediterranean conditions. Agr Water Manag 164:137–147

    Article  Google Scholar 

  • Yu J, Pressoir G, Briggs WH, Vroh BI, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Todhunter RJ, Buckler ES, Van Vleck LD (2007) Technical note: use of marker-based relationships with multiple-trait derivative-free restricted maximal likelihood. J Anim Sci 85:881–885

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Ersoz E, Lai CQ, Todhunter RJ, Tiwari HK, Gore MA, Bradbury PJ, Yu J, Arnett DK, Ordovas JM, Buckler ES (2010) Mixed linear model approach adapted for genome-wide association studies. Nat Genet 42:355–360

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang J, Song Q, Cregan PB, Nelson RL, Wang X, Wu J, Jiang GL (2015) Genome-wide association study for flowering time, maturity dates and plant height in early maturing soybean (Glycine max) germplasm. BMC Genom 16:217. https://doi.org/10.1186/s12864-015-1441-4

    Article  CAS  Google Scholar 

  • Zhu C, Gore MA, Buckler ES, Yu J (2008) Status and prospects of association mapping in plants. Plant Genome-US 1:5–20

    Article  CAS  Google Scholar 

  • Zia S, Sophrer K, Du W, Spreer W, Romano G, Xiongkui H, Müller J (2011) Monitoring physiological responses to water stress in two maize varieties by infrared thermography. Int J Agric Biol Eng 4:7–15

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge partial funding of this research from the United Soybean Board. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. The USDA is an equal opportunity provider and employer. Appreciation is also extended to Marilynn Davies and Jody Hedge for excellent technical assistance (Grant No. 1820-172-0118-A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larry C. Purcell.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kaler, A.S., Ray, J.D., Schapaugh, W.T. et al. Association mapping identifies loci for canopy temperature under drought in diverse soybean genotypes. Euphytica 214, 135 (2018). https://doi.org/10.1007/s10681-018-2215-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-018-2215-2

Keywords

  • Drought tolerance
  • High throughput phenotyping
  • Infrared canopy temperature