, 214:99 | Cite as

Towards sweet cherry (Prunus avium L.) breeding: phenotyping evaluation of newly developed hybrids

  • Ioannis Ganopoulos
  • Anna-Maria Farsakoglou
  • Filippos Aravanopoulos
  • Athanassios Molassiotis
  • Michail Michailidis
  • Ermioni Malliarou
  • Evangelia Avramidou
  • Athanasios Tsaftaris
  • Maslin Osanthanunkul
  • Panagiotis Madesis
  • Konstantinos Kazantzis
  • Aliki Xanthopoulou


An increasing demand for cherry production (Prunus avium L.) in Greece led to the development of new high quality sweet cherry cultivars. Self-incompatibility in cherry is one of the most challenging issues for the species’ cultivation and top breeding priority. Τhe present study focuses on the development of new hybrids with improved traits such as productivity, fruit size, organoleptic characteristics and self-compatibility. For this purpose, thirty different cultivars were crossed and produced hybrids that were evaluated according to 34 morpho-physiological characteristics. The results were analyzed using the XLSTAT (version 2014.1) software and a dendrogram was constructed using the agglomerative hierarchical clustering method. Optimal hybrid clustering was achieved when characteristics of great economic importance such as fruit shape and size, growth habit and days to blooming were included in the analysis. Based on the results, new sweet cherry hybrids with the special character of self-compatibility were developed. Our findings provide crucial new information for sweet cherry future breeding programs and cultivation.


Sweet cherry Hybrids Self-compatibility Phenotypic Multivariate analysis 



Aliki Xanthopoulou acknowledges “HFRI: Research Projects for Postdoctoral Researchers” funded by H.F.R.I. (Hellenic Foundation for Research and Innovation).

Supplementary material

10681_2018_2179_MOESM1_ESM.xlsx (16 kb)
Supplementary material 1 (XLSX 16 kb)


  1. Aravanopoulos FA (2010a) Contribution of leaf morphometrics in the study of genetic entries in Salix. Electron J Plant Breed 1(5):1320–1328Google Scholar
  2. Aravanopoulos FA (2010b) Clonal identification based on quantitative, codominant, and dominant marker data: a comparative analysis of selected willow (Salix L.) clones. Int J For Res. Google Scholar
  3. Bassi D, Guerriero R, Pennone F (1995) The apricot cultivars. Rivista di Frutticoltura e di Ortofloricoltura (Italy).Google Scholar
  4. Beyer M, Hahn R, Peschel S, Harz M, Knoche M (2002) Analysing fruit shape in sweet cherry (Prunus avium L.). Sci Hortic 96(1):139–150CrossRefGoogle Scholar
  5. Cachi AM, Wünsch A (2014) S-genotyping of sweet cherry varieties from Spain and S-locus diversity in Europe. Euphytica 197(2):229–236CrossRefGoogle Scholar
  6. Carrasco B, Meisel L, Gebauer M, Garcia-Gonzales R, Silva H (2013) Breeding in peach, cherry and plum: from a tissue culture, genetic, transcriptomic and genomic perspective. Biol Res 46(3):219–230CrossRefPubMedGoogle Scholar
  7. de Oliveira EJ, Dias NLP, Dantas JLL (2012) Selection of morpho-agronomic descriptors for characterization of papaya cultivars. Euphytica 185(2):253–265CrossRefGoogle Scholar
  8. Furones-Pérez P, Fernández-López J (2009) Morphological and phenological description of 38 sweet chestnut cultivars (Castanea sativa Miller) in a contemporary collection. Span J Agric Res 4:829–843CrossRefGoogle Scholar
  9. Ganopoulos IV, Kazantzis K, Chatzicharisis I, Karayiannis I, Tsaftaris AS (2011) Genetic diversity, structure and fruit trait associations in Greek sweet cherry cultivars using microsatellite based (SSR/ISSR) and morpho-physiological markers. Euphytica 181(2):237–251CrossRefGoogle Scholar
  10. Ganopoulos I, Moysiadis T, Xanthopoulou A, Ganopoulou M, Avramidou E, Aravanopoulos FA, Tani E, Madesis P, Tsaftaris A, Kazantzis K (2015) Diversity of morpho-physiological traits in worldwide sweet cherry cultivars of GeneBank collection using multivariate analysis. Sci Hortic 197:381–391CrossRefGoogle Scholar
  11. Hedrick UP (1915) The cherries of New York. J B Lyon, AlbanyCrossRefGoogle Scholar
  12. Humphry-Baker P (1975) Pollination and fruit set in tree fruits. British Columbia Department of Agriculture, VictoriaGoogle Scholar
  13. Iezzoni AF (2008) Cherries. In: Hancock JF (ed). Temperate fruit crop breeding. Springer, Berlin, pp 151–176CrossRefGoogle Scholar
  14. IPGRI (1985) Cherry descriptors. International Plant Genetic Resources Institute, Rome, p 33Google Scholar
  15. Kaiser HF (1958) The varimax criterion for analytic rotation in factor analysis. Psychometrika 23(3):187–200CrossRefGoogle Scholar
  16. Khadivi-Khub A (2014) Assessment of cultivated cherry germplasm in Iran by multivariate analysis. Trees 28(3):669–685CrossRefGoogle Scholar
  17. Khadivi-Khub A, Sarooghi F, Abbasi F (2016) Phenotypic variation of Prunus scoparia germplasm: implications for breeding. Sci Hortic 207:193–202CrossRefGoogle Scholar
  18. Lapins KO (1971) Stella, a self-fruitful sweet cherry. Can J Plant Sci 51(3):252–253CrossRefGoogle Scholar
  19. Lloyd DG (1992) Self-and cross-fertilization in plants. II. The selection of self-fertilization. Int J Plant Sci 153(3, Part 1):370–380CrossRefGoogle Scholar
  20. Marshall RE (1954) Cherries and cherry products. In: Economic crops. Interscience, ed., vol 5. New YorkGoogle Scholar
  21. Mehmood A, Jaskani MJ, Khan IA, Ahmad S, Ahmad R, Luo S, Ahmad NM (2014) Genetic diversity of Pakistani guava (Psidium guajava L.) germplasm and its implications for conservation and breeding. Sci Hortic 172:221–232CrossRefGoogle Scholar
  22. Moghadam EG, Hosseini P, Mokhtarian A (2009) Blooming phenology and self-incompatibility of some commercial cherry (Prunus avium L.) cultivars in Iran. Sci Hortic 123(1):29–33CrossRefGoogle Scholar
  23. Nikolić D, Rakonjac V, Milatović D, Fotirić M (2010) Multivariate analysis of vineyard peach [Prunus persica (L.) Batsch.] germplasm collection. Euphytica 171(2):227CrossRefGoogle Scholar
  24. Nyéki J, Soltész M, Szabó Z (2008) Morphology, biology and fertility of flowers in temperate zone fruits. Akadémiai Kiadó, BudapestGoogle Scholar
  25. Peeters JP, Martinelli JA (1989) Hierarchical cluster analysis as a tool to manage variation in germplasm collections. Theor Appl Genet 78(1):42–48CrossRefPubMedGoogle Scholar
  26. Petruccelli R, Ganino T, Ciaccheri L, Maselli F, Mariotti P (2013) Phenotypic diversity of traditional cherry accessions present in the Tuscan region. Sci Hortic 150:334–347CrossRefGoogle Scholar
  27. Pimentel RA (1979) Morphometrics, the multivariate analysis of biological data. Kendall/Hunt Pub. Co.Google Scholar
  28. Rakonjac V, Akšić MF, Nikolić D, Milatović D, Čolić S (2010) Morphological characterization of ‘Oblačinska’sour cherry by multivariate analysis. Sci Hortic 125(4):679–684CrossRefGoogle Scholar
  29. Ruiz D, Egea J (2008) Phenotypic diversity and relationships of fruit quality traits in apricot (Prunus armeniaca L.) germplasm. Euphytica 163(1):143–158CrossRefGoogle Scholar
  30. Sorkheh K, Shiran B, Rouhi V, Asadi E, Jahanbazi H, Moradi H, Gradziel TM, Martínez-Gómez P (2009) Phenotypic diversity within native Iranian almond (Prunus spp.) species and their breeding potential. Genet Resour Crop Evol 56(7):947CrossRefGoogle Scholar
  31. UPOV (1976) Guidelines for the conduct of test for dis- tintness, homogeinity and stability of the cherry. International Union for the Protection of New Varieties of Plants, Genova, p 15Google Scholar
  32. Webster AD (1996) The Taxonomic classification of sweet and sour cherries and a brief history of their cultivation. In: Webster AD, Looney NE (eds) cherries. Cab International, Wallingford, pp 3–25Google Scholar
  33. Zhu M, Zhang X, Zhang K, Jiang L, Zhang L (2004) Development of a simple molecular marker specific for detecting the self-compatibleS4′ haplotype in sweet cherry (Prunus avium L.). Plant Mol Biol Report 22(4):387–398CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Ioannis Ganopoulos
    • 1
  • Anna-Maria Farsakoglou
    • 2
  • Filippos Aravanopoulos
    • 2
  • Athanassios Molassiotis
    • 5
  • Michail Michailidis
    • 5
  • Ermioni Malliarou
    • 2
  • Evangelia Avramidou
    • 2
  • Athanasios Tsaftaris
    • 3
  • Maslin Osanthanunkul
    • 6
    • 8
  • Panagiotis Madesis
    • 9
  • Konstantinos Kazantzis
    • 7
  • Aliki Xanthopoulou
    • 4
  1. 1.Institute of Plant Breeding and Genetic ResourcesELGO-DEMETERThermi, ThessaloníkiGreece
  2. 2.Laboratory of Forest Genetics and Tree Breeding, Faculty of Agriculture, Forestry and Environmental ScienceAristotle University of ThessalonikiThessaloníkiGreece
  3. 3.Perrotis College, American Farm School. ThessalonikiThessaloníkiGreece
  4. 4.Department of Genetics and Plant Breeding, School of AgricultureAristotle University of ThessalonikiThessaloníkiGreece
  5. 5.Laboratory of Pomology, Department of AgricultureAristotle University of ThessalonikiThessaloníkiGreece
  6. 6.Center of Excellence in Bioresources for Agriculture, Industry and MedicineChiang Mai UniversityChiang MaiThailand
  7. 7.Department of PomologyInstitute of Plant Breeding and Genetic ResourcesNaousaGreece
  8. 8.Department of Biology, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
  9. 9.Institute of Applied BiosciencesThessalonikiGreece

Personalised recommendations