, 214:81 | Cite as

Estimation of outcrossing rates using genomic marker and determination of seed quality parameters in Valeriana officinalis L. s.l. under field conditions

  • Michael Penzkofer
  • Stefan Seefelder
  • Heidi Heuberger


Knowledge of the biological properties of pollination and fertilization are essential for breeding and the development of breeding concepts. In this investigation, panmictically cross-pollinated seeds of two selected combining partners of valerian (Valeriana officinalis L.) were produced and in the progeny, the outcrossing rates (OCR) were determined by using amplified fragment length polymorphism analysis (AFLP). The previous assumption that Valeriana officinalis L. shows a predominantly high outcrossing rate (OCR) was confirmed. The OCR ranged from 76.5 to 97.7%. Several mother plants showed an OCR of 100% in their progeny. Partially involved heterozygous DNA-fragments could have led to undetected outcrossings and to a lower OCR. The preferred outcrossing direction and the individual seed amount of the mother plants may influence the performance of a seed mixture, generated by both partners as mother plants.


Panmixia AFLP Tetraploid Seed yield Thousand-seed weight Germination capacity 



Special thanks to Dr. Elisabeth Seigner, Dr. Günther Schweizer and Erich Gastl, of the Research Groups IPZ5c, IPZ1b and AVB1 at the Bavarian State Research Center for Agriculture (LfL) for supply, guidance and assistance in the plant cultivation, the seed production and the molecular genetic analysis and to Dr. Fred Eickmeyer (ESKUSA GmbH, Steinach) for the plant cultivation and the seed production.


The breeding program at the Bavarian State Research Center for Agriculture (LfL) has the objective to improve production profitability of the German medicinal plants production. The project is part of the Demonstration Project Medicinal Plants (KAMEL) and is being supported by Fachagentur Nachwachsende Rohstoffe e.V. (FNR) on behalf of the German Federal Ministry of Food and Agriculture based on a decision of the German Bundestag (FKZ: 22003015, 15NR030).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

10681_2018_2164_MOESM1_ESM.xlsx (13 kb)
Supplementary material 1 (XLSX 13 kb)


  1. Adams WT (1983) Applications of isozymes in tree breeding. In: Tanksley SD, Orton TJ (eds) Isozymes in plant genetics and breeding Part A. Elsevier Science Publishers, Amsterdam, pp 60–64Google Scholar
  2. Aedtner D (2009) Keimfähigkeit und Keimruhe. In: Hoppe B (ed) Handbuch des Arznei- und Gewürzpflanzenanbaus, vol 1. Verein für Arznei- und Gewürzpflanzen SALUPLANTA e.V, Bernburg, pp 646–654Google Scholar
  3. Bomme U (2001) Kulturanleitung für Baldrian. Bayerische Landesanstalt für Landwirtschaft (LfL). Accessed 13 Nov 2017
  4. Bomme U, Feicht E, Lepschy J (1999) Ergebnisse zu Leistungsprüfungen mit Baldrian- (Valeriana officinalis-) Herkünften. Zeitschrift für Arznei- und Gewürzpflanzen 4:191–197Google Scholar
  5. Carromero W, Hamrick JL (2005) The Mating System of Verbascum thapsus (Scrophulariaceae): the effect of Plant Height. Int J Plant Sci 166:979–983CrossRefGoogle Scholar
  6. D’Andrea L, Felber F, Guadagnuolo R (2008) Hybridization rates between lettuce (Lactuca sativa) and its wild relative (L. serriola) under field conditions. Environ Biosaf Res 7:61–71CrossRefGoogle Scholar
  7. Dobos G (1996) Fremdbefruchtungsrate und Heterosis bei Mohn. Aktuelle Züchtungsforschung 32:118–120Google Scholar
  8. Duarte-Silva E, Rodrigues LR, Mariath JEA (2011) Contradictory results in pollen viability determination of Valeriana scandens L. Gene Conserv 10:234–242Google Scholar
  9. Ducarme V, Wesselingh RA (2013) Outcrossing rates in two self-compatible, hybridising Rhinanthus species: implication for hybrid formation. Plant Biol 15:541–547CrossRefPubMedGoogle Scholar
  10. ESCOP (2009) European scientific cooperative on phytotherapy, monograph, valerianae radix, valerian root, 2nd edn. Thieme, StuttgartGoogle Scholar
  11. Hartl L, Seefelder S (1998) Diversity of selected hop cultivars detected by fluorescent AFLPs. Theor Appl Genet 96:112–116CrossRefGoogle Scholar
  12. Heeger EF (1956) Handbuch des Arznei- und Gewürzpflanzenbaues. Deutscher Bauernverlag, BerlinGoogle Scholar
  13. Heuberger H, Penzkofer M (2017) Züchterische Verbesserung von Baldrian zur Erhöhung der Rentabilität und Drogenqualität. Bayerische Landesanstalt für Landwirtschaft (LfL). Accessed 13 Nov 2017
  14. Heuberger H, Heubl G, Müller M, Seefelder S, Seidenberger R (2012a) Verwandschaftsverhältnisse und Ploidiestufen ausgewählter Herkünfte Als Ausgangsmaterial für die Züchtung von Arznei-Baldrian (Valeriana officinalis L. s.l.). Zeitschrift für Arznei und Gewürzpflanzen 1:28–37Google Scholar
  15. Heuberger H, Lohwasser U, Schmatz R, Tegtmeier M (2012b) Baldrian (Valeriana officinalis L.). In: Hoppe B (ed) Handbuch des Arznei- und Gewürzpflanzenanbaus Band 4 Arznei- und Gewürzpflanzen A-K. Verein für Arznei- und Gewürzpflanzen SALUPLANTA e.V., Bernburg, pp 164–183Google Scholar
  16. Hoyle M, Cresswell JE (2007) The effect of wind direction on cross-pollination in wind-pollinated GM crops. Ecol Appl 17:1234–1243CrossRefPubMedGoogle Scholar
  17. ISTA (2009) International Rules for Seed Testing. I. S. Association, Ed. Bassersdorf, Schweiz Kawashima S, Nozaki H, Hamazaki T, Sakata S, Hama T, Matsuo, K, Nagasawa A (2011) Environmental effects on long-range outcrossing rates in maize. Agric Ecosyst Environ 142:410–418Google Scholar
  18. Kempf IM (1986) Grundlagen zur Züchtung von Valeriana officinalis L., Baldrian. Dissertation, Justus-Liebig-University GießenGoogle Scholar
  19. Konon NT, Korneva EI (1980) Interspecific crossings of valerian. Rastitel’n Resursy 16:396–400Google Scholar
  20. Konon NT, Novikova NL (1981) Reaction of Valeriana officinalis to inbreeding. Rastitel’n Resursy 17:85–90Google Scholar
  21. Konovalova O, Konon NT, Mikhailova NS, Rybalko KS, Khlaptsev EE (1978) Biology of flowering and pollination in Valeriana officinalis in the Moscow Region. Rastitel’n Resursy 14:73–77Google Scholar
  22. Leach CR, Mayo O, Bürger R (1990) Quantitatively determined self-incompatibility 2. Outcrossing in Borago officinalis. Theor Appl Genet 79:427–430CrossRefPubMedGoogle Scholar
  23. Muluvi GM, Sprent JI, Odee D, Powell W (2004) Estimates of outcrossing rates in Moringa oleifera using amplified fragment length polymorphism (AFLP). Afr J Biotech 3:146–151CrossRefGoogle Scholar
  24. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  25. Nabloussi A, Velasco L, Fernandz-Martinez JM (2013) Cross pollination of safflower (Carthamus tinctorius L.) under Moroccan enviromental conditions. Int J Plant Breed 7:145–147Google Scholar
  26. Pathirana R (1994) Natural cross-pollination in sesame (Sesamum indicum L.). Plant Breed 112:167–170CrossRefGoogle Scholar
  27. Penzkofer M, Heuberger H, Geyer M, Killermann B, Konnert M (2014a) The application of isozym-polymorphism—a challenge in the breeding of new varieties of valerian (Valeriana officinalis L. sl). Julius-Kühn-Archiv 446:89–93Google Scholar
  28. Penzkofer M, Ziegler E, Heuberger H (2014b) Contents of essential oil, valerenic acids and extractives in different parts of the rootstock of medicinal valerian (Valeriana officinalis L. s.l.). J Appl Res Med Aromat Plants 1:98–106Google Scholar
  29. Penzkofer M, Seefelder S, Heuberger H (2016) Hybrid-breeding of medicinally used valerian (Valeriana officinalis L. s.l.) Apossible concept developing new varieties? In: Marthe F, Riegler H (eds) 6th international symposium breeding research on medicinal and aromatic plants (BREEDMAP 6), Quedlinburg, Germany, June 19–23, 2016, Julius-Kühn-Archive 453Google Scholar
  30. Ph. Eur. 9.1 (2017) European pharmacopoeia. Baldrianwurzel Valerianae radix s.l. 9th ed. Deutscher Apotheker Verlag, Govi-Verlag-Pharmazeutischer Verlag GmbH, Stuttgart, EschbornGoogle Scholar
  31. R Core Team (2016) R: A language and environment for statistical computing. Foundation for Statistical Computing, ViennaGoogle Scholar
  32. Schmalz H (1989) Pflanzenzüchtung, 4th edn. Deutscher Landwirtschaftsverlag, BerlinGoogle Scholar
  33. Seefelder S, Ermaier H, Schweizer G, Seigner E (2000) Genetic diversity and phylogenetic relationships among accessions of hop, Humulus lupulus, as determined by amplified fragment length polymorphism fingerprinting compared with pedigree data. Plant Breed 119(3):257–263CrossRefGoogle Scholar
  34. Shugaeva EV (1979) Male sterility of Valeriana officinalis L. s.l. Sov Genet 15:93–97Google Scholar
  35. Stoskopf NC, Tomes DT, Christie BR (1993) Plant breeding. Theory and practice. Westview Press, Boulder, San Francisco, OxfordGoogle Scholar
  36. STRATEC (2017) User Manual Invisorb® Spin Plant Mini Kit. Accessed 28 Sept 2017
  37. Van De Wiel CCM, Lotz LAP (2006) Outcrossing and coexistence of genetically modified with (genetically) unmodified crops: a case study of the situation in the Netherlands. NJAS Wagening J Life Sci 54(1):17–35CrossRefGoogle Scholar
  38. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Friters A, Pot J, Paleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23(21):4407–4414CrossRefPubMedPubMedCentralGoogle Scholar
  39. Wahl S, Plescher A (2014) Saatgutqualität von Kamille (Matricaria recutica L.), Melisse (Melissa officinalis L.) und Baldrian (Valeriana officinalis L.) am deutschen Saatgutmarkt 2009 bis 2011. Zeitschrift für Arznei- und Gewürzpflanzen 19:70–78Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Crop Science and Plant BreedingBavarian State Research Center for Agriculture (LfL)FreisingGermany

Personalised recommendations