, 214:36 | Cite as

Asparagine synthetase genes (AsnS1 and AsnS2) in durum wheat: structural analysis and expression under nitrogen stress

  • Pasquale L. Curci
  • Hélène Bergès
  • William Marande
  • Marco Maccaferri
  • Roberto Tuberosa
  • Gabriella Sonnante


Wheat is one of the most widely grown cereal crops based on the amount of calories it provides in the human diet. Durum wheat (Triticum turgidum ssp. durum) is largely used for production of pasta and other products. In order to use genetic knowledge to improve the understanding of N-use efficiency, we carried out, for the first time in durum wheat, the isolation and the characterization of four members of the asparagine synthetase (AsnS) gene family. Phylogenetic inference clustered the Ttu-AsnS1 (1.1 and 1.2) and Ttu-AsnS2 (2.1 and 2.2) genes in AsnS gene class I, which is present in monocots and dicots. Class I genes underwent a subsequent duplication leading to the formation of two subgroups. Plants of Svevo cultivar were grown under N-stress conditions and expression of the four AsnS genes was investigated at three developmental stages (seedling, booting, and late milk development), crucial for N absorption, assimilation and remobilization. AsnS1 genes were down-regulated in N-stressed roots, stems and leaves during seedling growth and booting, but seemed to play a role in N remobilization in flag leaves during grain filling. AsnS2 genes were scarcely expressed in roots, stems, and leaves. In N-stressed spikes there was no differential expression in any of the genes. The genes were mapped in silico using a durum wheat SNP map, assigning Ttu-AsnS1 genes to chromosome 5 and Ttu-AsnS2 to chromosome 3. These findings provide a better understanding of the role of ASN genes in response to N stress in durum wheat.


AsnS gene family BAC library High-throughput sequencing Triticum turgidum ssp. durum 



We thank Anita Morgese (CNR-IBBR, Bari, Italy), Joëlle Fourment, Nathalie Rodde and Nadine Gautier (CNRGV, Toulouse, France) for technical support.


This work was supported by the Italian Ministry MIUR projects: PON01_01145 ISCOCEM “Sviluppo tecnologico e innovazione per la sostenibilità e competitività della cerealicoltura meridionale”; PRIN 2010–2011 prot. 2010Z77XAX_004 “Identificazione e caratterizzazione di geni utili ad incrementare la produttività e sostenibilità del frumento duro”, and by Italian Ministry MiPAAF project “Implementazione nazionale trattato FAO Risorse Genetiche Vegetali III triennio 2011–2013”.

Supplementary material

10681_2017_2105_MOESM1_ESM.docx (29 kb)
Supplementary material 1 (DOCX 29 kb)
10681_2017_2105_MOESM2_ESM.docx (17 kb)
Supplementary material 2 (DOCX 17 kb)


  1. Antunes F, Aguilar M, Pineda M, Sodek L (2008) Nitrogen stress and the expression of asparagine synthetase in roots and nodules of soybean (Glycine max). Physiol Plant 133:736–743CrossRefPubMedGoogle Scholar
  2. Avila-Ospina L, Marmagne A, Talbotec J, Krupinska K (2015) The identification of new cytosolic glutamine synthetase and asparagine synthetase genes in barley (Hordeum vulgare L.), and their expression during leaf senescence. J Exp Bot 66:2013–2026CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bahrani A, Hagh Joo M (2010) Flag leaf role in N accumulation and remobilization as affected by nitrogen in bread and durum wheat cultivars. Am Eurasian J Agric Environ Sci 8:728–735Google Scholar
  4. Barbottin A, Lecomte C, Bouchard C, Jeuffroy MH (2005) Nitrogen remobilization during grain filling in wheat: Genotypic and environmental effects. Crop Sci 45:1141–1150CrossRefGoogle Scholar
  5. Boehlein SK, Walworth ES, Richards NG, Schuster SM (1997a) Mutagenesis and chemical rescue indicate residues involved in β-aspartyl-AMP formation by Escherichia coli asparagine synthetase B. J Biol Chem 272:12384–12392CrossRefPubMedGoogle Scholar
  6. Boehlein SK, Walworth ES, Schuster SM (1997b) Identification of Cysteine-532 in the aspartate binding site of Escherichia coli asparagine synthetase B. Biochem 36:10168–10177CrossRefGoogle Scholar
  7. Calandro A, Cavazza L, Marzi V, Pacucci G (1981) Effect of high nitrose fertilizer levels on wheat in a Mediterranean climate. Riv Agron 15:237–244Google Scholar
  8. Cenci A, Chantret N, Kong X et al (2003) Construction and characterization of a half million clone BAC library of durum wheat (Triticum turgidum ssp. durum). Theor Appl Genet 107:931–939CrossRefPubMedGoogle Scholar
  9. Chen RM, Ni Z, Qin Y, Lin Z, Dong G (2005) Isolation and characterization of TaDof1 transcription factor in wheat (Triticum aestivum. L). DNA Seq 16:358–363CrossRefPubMedGoogle Scholar
  10. Curci PL, De Paola D, Sonnante G (2015) Development of chloroplast genomic resources for Cynara. Mol Ecol Res 16:562–573CrossRefGoogle Scholar
  11. Curci PL, Aiese Cigliano R, Zuluaga D et al (2017) Transcriptomic response of durum wheat to nitrogen starvation. Sci Rep 7:1176CrossRefPubMedPubMedCentralGoogle Scholar
  12. De Giorgio D, Rizzo V, Rinaldi M (1993) Dinamica dell’accrescimento del frumento duro (Triticum durum Desf.) in monosuccessione, sottoposto a differenti modalità di lavorazione del terreno e dosi di fertilizzante azotato. Riv Agron 27:524–531Google Scholar
  13. de Oliveira Veras AA, de Sá PHCG, Azevedo V, Silva A, Ramos RTJ (2013) AutoAssemblyD: a graphical user interface system for several genome assemblers. Bioinformation 9:840–841CrossRefGoogle Scholar
  14. Frink CR, Waggoner PE, Ausubel JH (1999) Nitrogen fertilizer: retrospect and prospect. Proc Natl Acad Sci USA 96:1175–1180CrossRefPubMedPubMedCentralGoogle Scholar
  15. Gao R, Curtis TY, Powers SJ et al (2016) Food safety: structure and expression of the asparagine synthetase gene family of wheat. J Cereal Sci 68:122–131CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gaufichon L, Reisdorf-Cren M, Rothstein SJ, Chardon F, Suzukia A (2010) Biological functions of asparagine synthetase in plants. Plant Sci 179:141–153CrossRefGoogle Scholar
  17. Gimenez MJ, Piston F, Atienza SG (2011) Identification of suitable reference genes for normalization of qPCR data in comparative transcriptomics analyses in the Triticeae. Planta 233:163–173CrossRefPubMedGoogle Scholar
  18. González MC, Osuna L, Echevarría C, Vidal J, Cejudo FJ (1998) Expression and localization of phosphoenolpyruvate carboxylase in developing and germinating wheat grains. Plant Physiol 116:1249–1258CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hao QN, Zhou XA, Sha AH et al (2011) Identification of genes associated with nitrogen-use efficiency by genome-wide transcriptional analysis of two soybean genotypes. BMC Genomics 12:525CrossRefPubMedPubMedCentralGoogle Scholar
  20. Herrera-Rodriguez MB, Carrasco-Ballesteros S, Maldonado JM et al (2002) Three genes showing distinct regulatory patterns encode the asparagine synthetase of sunflower (Helianthus annuus). New Phytol 155:33–45CrossRefGoogle Scholar
  21. Herrera-Rodriguez MB, Maldonado JM, Perez-Vicente R (2004) Light and metabolic regulation of HAS1, HAS1.1 and HAS2, three asparagine synthetase genes in Helianthus annuus. Plant Physiol Biochem 42:511–518CrossRefPubMedGoogle Scholar
  22. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kirkman MA, Miflin BJ (1979) The nitrate content and amino acid composition of the xylem fluid of spring wheat throughout the growing season. J Sci Food Agric 30:653–660CrossRefGoogle Scholar
  24. Lam HM, Peng SS-Y, Coruzzi GM (1994) Metabolic regulation of the gene encoding glutamine-dependent asparagine synthetase in Arabidopsis thaliana. Plant Physiol 106:1347–1357CrossRefPubMedPubMedCentralGoogle Scholar
  25. Lam HM, Hsieh M-H, Coruzzi G (1998) Reciprocal regulation of distinct asparagine synthetase genes by light and metabolites in Arabidopsis thaliana. Plant J 16:345–353CrossRefPubMedGoogle Scholar
  26. Larsen TM, Boehlein SK, Schuster SM et al (1999) Three-dimensional structure of Escherichia coli asparagine synthetase B: a short journey from substrate to product. Biochemistry 38:16146–16157CrossRefPubMedGoogle Scholar
  27. Lea PJ, Ireland RJ (1999) Nitrogen metabolism in higher plants. In: Singh B (ed) Plant amino acids: biochemistry and biotechnology. Marcel Dekker, New York, pp 1–47Google Scholar
  28. Leroy P, Guilhot N, Sakai H et al (2012) TriAnnot: a versatile and high performance pipeline for the automated annotation of plant genomes. Front Plant Sci 3:5CrossRefPubMedPubMedCentralGoogle Scholar
  29. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta deltaC(T)) method. Methods 4:402–408CrossRefGoogle Scholar
  30. Maccaferri M, Ricci A, Salvi S et al (2015) A high-density, SNP-based consensus map of tetraploid wheat as a bridge to integrate durum and bread wheat genomics and breeding. Plant Biotech J 13:648–663CrossRefGoogle Scholar
  31. Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J et al (2010) Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Ann Bot 105:1141–1157CrossRefPubMedPubMedCentralGoogle Scholar
  32. Mei B, Zalkin H (1989) A cysteine–histidine–aspartate catalytic triad is involved in glutamine amide transferase function in purF-type glutamine amidotransferases. J Biol Chem 264:16613–16619PubMedGoogle Scholar
  33. Mohammadi M, Kav NNV, Deyholos MK (2007) Transcriptional profiling of hexaploid wheat (Triticum aestivum L.) roots identifies novel, dehydration-responsive genes. Plant Cell Environ 30:630–645CrossRefPubMedGoogle Scholar
  34. Møller MG, Taylor C, Rasmussen SK, Holm PB (2003) Molecular cloning and characterisation of two genes encoding asparagine synthetase in barley (Hordeum vulgare L.). Biochim Biophys Acta (BBA) 1628:123–132CrossRefGoogle Scholar
  35. Nigro D, Blanco A, Anderson OD, Gadaleta A (2014) Characterization of ferredoxin-dependent Glutamine-oxoglutarate amidotransferase (Fd-GOGAT) genes and their relationship with grain protein content QTL in wheat. PLoS ONE 9:e103869CrossRefPubMedPubMedCentralGoogle Scholar
  36. Osuna D, Gálvez-Valdivieso G, Pineda M, Aguilar M (1999) RT-PCR cloning, characterization and mRNA expression analysis of a cDNA encoding a type II asparagine synthetase in common bean. Biochim Biophys Acta 1445:75–85CrossRefPubMedGoogle Scholar
  37. Osuna D, Gálvez-Valdivieso G, Piedras P, Pineda M, Aguilar M (2001) Cloning, characterization and mRNA expression analysis of PVAS1, a type I asparagine synthetase gene from Phaseolus vulgaris. Planta 213:402–410CrossRefPubMedGoogle Scholar
  38. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  39. Simmons SR, Moss DM (1978) Nitrate reductase as a factor affecting nitrogen assimilation during the grain filling period in spring wheat. Crop Sci 18:584–586CrossRefGoogle Scholar
  40. Steward GR, Larher F (1980) Accumulation of amino acids and related compounds in relation to environmental stress. In: Miflin BJ (ed) The biochemistry of plants. Academic Press, New York, pp 609–635Google Scholar
  41. Talamè V, Bovina R, Sanguineti MC (2008) TILLMore, a resource for the discovery of chemically induced mutants in barley. Plant Biotechnol J 6:477–485CrossRefPubMedGoogle Scholar
  42. Tindal TA, Jeffrey CS, Brooks RH (1995) Irrigated spring wheat responses to top dressed nitrogen as predict by flag leaf nitrogen concentration. J Prod Agric 8:46–52CrossRefGoogle Scholar
  43. Todd J, Screen S, Crowley J et al (2008) Identification and characterization of four distinct asparagine synthetase (AsnS) genes in maize (Zea mays L.). Plant Sci 175:799–808CrossRefGoogle Scholar
  44. Uauy C, Praiso F, Colasuonno P et al (2009) A modified TILLING approach to detect induced mutations in tetraploid and hexaploid wheat. BMC Plant Biol 9:115CrossRefPubMedPubMedCentralGoogle Scholar
  45. Van Sanford DA, Mackown CT (1987) Cultivar differences in nitrogen remobilization during grain fill in soft red winter wheat. Crop Sci 27:295–300CrossRefGoogle Scholar
  46. Wang H, Liu D, Sun J, Zhang A (2005) Asparagine synthetase gene TaASN1 from wheat is up-regulated by salt stress, osmotic stress and ABA. J Plant Physiol 162:81–89CrossRefPubMedGoogle Scholar
  47. Wang S, Wong D, Forrest K et al (2014) Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. Plant Biotechnol J 12:787–796CrossRefPubMedPubMedCentralGoogle Scholar
  48. Xu G, Fan X, Miller AJ (2012) Plant nitrogen assimilation and use efficiency. Ann Rev Plant Biol 63:153–182CrossRefGoogle Scholar
  49. Yin LP, Li P, Wen B, Taylor D, Berry JO (2007) Characterization and expression of a high-affinity nitrate system transporter gene (TaNRT2.1) from wheat roots, and its evolutionary relationship to other NTR2 genes. Plant Sci 172:621–631CrossRefGoogle Scholar
  50. Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415–421CrossRefGoogle Scholar
  51. Zuluaga DL, De Paola D, Curci PL, Sonnante G (2017) Durum wheat miRNAs in response to nitrogen starvation at the grain filling stage. PLoS ONE 12(8):e0183253CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Pasquale L. Curci
    • 1
  • Hélène Bergès
    • 2
  • William Marande
    • 2
  • Marco Maccaferri
    • 3
  • Roberto Tuberosa
    • 3
  • Gabriella Sonnante
    • 1
  1. 1.Institute of Biosciences and BioresourcesNational Research CouncilBariItaly
  2. 2.Centre National de Ressources Génomiques VégétalesINRA–CNRGVCastanet-TolosanFrance
  3. 3.Department of Agricultural Sciences (DipSA)University of BolognaBolognaItaly

Personalised recommendations