Euphytica

, 214:47 | Cite as

Characterization and fine mapping of qPE12, a new locus controlling rice panicle exsertion

  • Chunfang Zhao
  • Qingyong Zhao
  • Ling Zhao
  • Lihui Zhou
  • Tao Chen
  • Shu Yao
  • Wenhua Liang
  • Yadong Zhang
  • Cailin Wang
Article
  • 98 Downloads

Abstract

Panicle exsertion is an important agronomic trait involved in pollination and hybrid rice seed production. The identification of genes controlling panicle exsertion will play a central role in hybrid rice breeding. C115, a chromosome segment substitution line carrying introgression segments of Nipponbare in genetic background of indica variety 9311, had significantly shortened panicle exsertion, uppermost internode length and plant height. Genetic analysis in F2 and F3 populations derived from a cross of C115 and 9311 indicated that the shortened panicle exsertion of C115 was recessive and controlled by a single Medelian factor, and the allele from Nipponbare decreased the phenotypic value. Primary mapping suggested qPE12, the Nipponbare introgression segment locating on the long arm of chromosome 12, was responsible for this phenotypic variation. Based on map-based cloning strategy, fine mapping was carried out with a total of 1130 recessive individuals selected from F2 and F3 populations, delimiting qPE12 to a 190-kb region. This result provides important information for isolation of a new gene controlling panicle exsertion in the future.

Keywords

Rice (Oryza sativa L.) Panicle exsertion Uppermost internode elongation Fine mapping 

Notes

Acknowledgements

This research was financially supported by the National Natural Sciences Foundation of China (31200144), the Jiangsu Agriculture Science and Technology Innovation Fund (CX[13]5001) the National Key Technology Support Program project (2015BAD01B02) and the key research and development projects of Jiangsu Province(BE2016370).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10681_2017_2104_MOESM1_ESM.docx (16 kb)
Supplementary material 1 (DOCX 16 kb)

References

  1. Avila CA, Arevalo-Soliz LM, Lorence A, Goggin FL (2013) Expression of α-DIOXYGENASE 1 in tomato and Arabidopsis contributes to plant defenses against aphids. Mol Plant 26(8):977–986Google Scholar
  2. Chen H, Jiang S, Zheng J, Lin Y (2013) Improving panicle exsertion of rice cytoplasmic male sterile line by combination of artificial microRNA and artificial target mimic. Plant Biotechnol J 11:336–343CrossRefPubMedGoogle Scholar
  3. da Cruz RP, Milach SCK, Federizzi LC (2008) Inheritance of panicle exsertion in rice. Sci Agric 65:502–507CrossRefGoogle Scholar
  4. Gao S, Fang J, Xu F, Wang W, Chu C (2016) Rice HOX12 regulates panicle exsertion by directly modulating the expression of ELONGATED UPPERMOST INTERNODE1. Plant Cell 28:680–695CrossRefPubMedPubMedCentralGoogle Scholar
  5. Gaquerel E, Steppuhn A, Baldwin IT (2012) Nicotiana attenuate α-DIOXYGENASE1 through its production of 2-hydroxylinolenic acid is required for intact plant defense expression against attack from Manduca sexta larvae. New Phytol 196:574–585CrossRefPubMedGoogle Scholar
  6. Hattori Y, Nagai K, Furukawa S, Song XJ, Kawano R, Sakakibara H, Wu J, Matsumoto T, Yoshimura A, Kitano H, Matsuoka M, Mori H, Ashikari M (2009) The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature 460(7258):1026–1030CrossRefPubMedGoogle Scholar
  7. Hong Z, Ueguchi-Tanaka M, Umemura K, Uozu S, Fujioka S, Takatsuto S, Yoshida S, Ashikari M, Kitano H, Matsuoka M (2003) A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell 15(12):2900–2910CrossRefPubMedPubMedCentralGoogle Scholar
  8. Hong Z, Ueguchi-Tanaka M, Fujioka S, Takatsuto S, Yoshida S, Hasegawa Y, Ashikari M, Kitano H, Matsuoka M (2005) The rice brassinosteroid-deficient dwarf2 mutant, defective in the rice homolog of Arabidopsis DIMINUTO/DWARF1, is rescued by the endogenously accumulated alternative bioactive brassinosteroid, dolichosterone. Plant Cell 17(8):2243–2254CrossRefPubMedPubMedCentralGoogle Scholar
  9. Itoh H, Ueguchi-Tanaka M, Sentoku N, Kitano H, Matsuoka M, Kobayashi M (2001) Cloning and functional analysis of two gibberellin 3 beta-hydroxylase genes that are differently expressed during the growth of rice. Proc Natl Acad Sci USA 98(15):8909–8914CrossRefPubMedPubMedCentralGoogle Scholar
  10. Itoh H, Tatsumi T, Sakamoto T, Otomo K, Toyomasu T, Kitano H, Ashikari M, Ichihara S, Matsuoka M (2004) A rice semi-dwarf gene, Tan-Ginbozu (D35), encodes the gibberellin biosynthesis enzyme, ent-kaurene oxidase. Plant Mol Biol 54(4):533–547CrossRefPubMedGoogle Scholar
  11. Je BI, Piao HL, Park SJ, Park SH, Kim CM, Xuan YH, Park SH, Huang J, Do Choi Y, An G, Wong HL (2010) RAV-Like1 maintains brassinosteroid homeostasis via the coordinated activation of BRI1 and biosynthetic genes in rice. Plant Cell Online 22(6):1777–1791CrossRefGoogle Scholar
  12. Ji H, Kim H, Yun DW, Yoon UH, Kim TH, Eun MY, Lee GS (2014) Characterization and fine mapping of a shortened uppermost internode mutant in rice. Plant Biotechnol Rep 8:125–134CrossRefGoogle Scholar
  13. Konishi S, Izawa T, Lin SY, Ebana K, Fukuta Y, Sasaki T, Yano M (2006) An SNP caused loss of seed shattering during rice domestication. Science 312:1392–1396CrossRefPubMedGoogle Scholar
  14. Li J, Yuan L (2010) Hybrid rice: genetics, breeding, and seed production. Plant Breed Rev 17:15–158Google Scholar
  15. Liu J, Chen J, Zheng X, Wu F, Lin Q, Heng Y, Tian P, Cheng Z, Yu X, Zhou K, Zhang X, Guo X, Wang J, Wang H, Wan J (2017) GW5 acts in the brassinosteroid signaling pathway to regulate grain width and weight in rice. Nat plant 3:17043CrossRefGoogle Scholar
  16. Luo D, Xu H, Liu Z, Guo J, Li H, Chen L, Fang C, Zhang Q, Bai M, Yao N, Wu H, Wu H, Ji C, Zheng H, Chen Y, Ye S, Li X, Zhao X, Li R, Liu Y (2013) A detrimental mitochondrial-nuclear interaction causes cytoplasmic male sterility in rice. Nat Genet 45:573–577CrossRefPubMedGoogle Scholar
  17. Ma H (2007) The achievements of rice eui genes in research and utilization. Mol Plant Breed 5:690–694Google Scholar
  18. Machado L, Castro A, Hamberg M, Bannenberg G, Gaggero C, Castresana C, de León I (2015) The Physcomitrella patens unique alpha-dioxygenase participates in both developmental processes and defense responses. BMC Plant Biol 15(1):45CrossRefPubMedPubMedCentralGoogle Scholar
  19. Peng S, Khush GS, Virk P, Tang Q, Zou Y (2008) Progress in idotype breeding to increase rice yield potential. Field Crop Res 108(1):32–38CrossRefGoogle Scholar
  20. Qiao B, Zhu X, Wang Y, Hong D (2008) Mapping QTL for three panicle exsertion-related traits in rice (Oryza sativa L.) under different growing environments. Acta Agron Sin 34:389–396Google Scholar
  21. Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush GS, Kitano H, Matsuoka M (2002) Green revolution: a mutant gibberellin-synthesis gene in rice. Nature 416(6882):701–702CrossRefPubMedGoogle Scholar
  22. Sasaki A, Itoh H, Gomi K, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Jeong DH, An G, Kitano H, Ashikari M, Matsuoka M (2003) Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant. Science 299(5614):1896–1898CrossRefPubMedGoogle Scholar
  23. Song X, Huang W, Shi M, Zhu M, Lin H (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39(5):623–630CrossRefPubMedGoogle Scholar
  24. Tong H, Jin Y, Liu W, Li F, Fang J, Yin Y, Qian Q, Zhu L, Chu C (2009) DWARF AND LOW-TILLERING, a new member of the GRAS family, plays positive roles in brassinosteroid signaling in rice. Plant J 58(5):803–816CrossRefPubMedGoogle Scholar
  25. Ueguchi-Tanaka M, Fujisawa Y, Kobayashi M, Ashikari M, Iwasaki Y, Kitano H, Matsuoka M (2000) Rice dwarf mutant d1, which is defective in the alpha subunit of the heterotrimeric G protein, affects gibberellin signal transduction. Proc Natl Acad Sci USA 97(21):11638–11643CrossRefPubMedPubMedCentralGoogle Scholar
  26. Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow TY, Hsing YI, Kitano H, Yamaguchi I, Matsuoka M (2005) GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature 437(7059):693–698CrossRefPubMedGoogle Scholar
  27. Wang Y, Li J (2011) Branching in rice. Curr Opin Plant Biol 14:94–99CrossRefPubMedGoogle Scholar
  28. Weng J, Gu S, Wan X, Gao H, Guo T, Su N, Lei C, Zhang X, Cheng Z, Guo X, Wang J, Jiang L, Zhai H, Wan J (2008) Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res 18:1199–1209CrossRefPubMedGoogle Scholar
  29. Yamamoto T, Taguchi-Shiobara T, Ukai Y, Saaki T, Yano M (2001) Mapping quantitative trait loci for days-to-heading, and culm, panicle and internode lengths in a BC1F3 population using an elite rice variety, Koshihikari, as the recurrent parent. Breed Sci 51:63–71CrossRefGoogle Scholar
  30. Yamamuro C, Ihara Y, Wu X, Noguchi T, Fujioka S, Takatsuto S, Ashikari M, Kitano H, Matsuoka M (2000) Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. Plant Cell 12(9):1591–1606CrossRefPubMedPubMedCentralGoogle Scholar
  31. Yin C, Gan L, Ng D, Zhou X, Xia K (2007) Decreased panicle-derived indole-3-acetic acid reduces gibberellin A1 level in the uppermost internode, causing panicle enclosure in male sterile rice Zhenshan 97A. J Exp Bot 58:2441–2449CrossRefPubMedGoogle Scholar
  32. Yin H, Gao P, Liu C, Yang J, Liu Z, Luo D (2013) SUI-family genes encode phosphatidylserine synthases and regulate stem development in rice. Planta 237:15–27CrossRefPubMedGoogle Scholar
  33. Yu H, Ruan B, Wang Z, Ren D, Zhang Y, Leng Y, Zeng D, Hu J, Zhang G, Zhu L, Gao Z, Chen G, Guo L, Chen W, Qian Q (2017) Fine mapping of a novel defective glume 1 (dg1) mutant, which affects vegetative and spikelet development in rice. Front Plant Sci 8:486PubMedPubMedCentralGoogle Scholar
  34. Zhang H, Liu H, Liu Y, Zhang R, Zhong X (2009) Research status and prospect of e-type hybrid rice. J Agric Sci Technol 4:10–15Google Scholar
  35. Zhang L, Cheng Z, Qin R, Qiu Y, Wang J, Cui X, Gu L, Zhang X, Guo X, Wang D, Jiang L, Wu C, Wang H, Cao X, Wan J (2012a) Identification and characterization of an epi-allele of FIE1 reveals a regulatory linkage between two epigenetic marks in rice. Plant Cell 24:4407–4421CrossRefPubMedPubMedCentralGoogle Scholar
  36. Zhang X, Wang J, Huang J, Lan H, Wang C, Yin C, Wu Y, Tang H, Qian Q, Li J, Zhang H (2012b) Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice. Proc Natl Acad Sci USA 109(52):21534–21539CrossRefPubMedPubMedCentralGoogle Scholar
  37. Zhao C, Zhou L, Yu X, Zhao Q, Chen T, Yao S, Zhang Y, Zhu Z, Wang C (2012) Identification of tiller angle quantitative trait loci based on chromosome segment substituted lines and high-density physical map in rice. Bull Bot 47(6):594–601Google Scholar
  38. Zhao C, Chen T, Zhao Q, Zhou L, Zhang Y, Zhu Z, Yao S, Wang C (2016) Analysis of QTLs for panicle exsertion and its relationship with yield and yield-related traits in rice (Oryza sativa L.). Genet Mol Res 15(2):gmr.15027423Google Scholar
  39. Zhu Y, Nomura T, Xu Y, Zhang Y, Peng Y, Mao B, Hanada A, Zhou H, Wang R, Li P, Zhu X, Mander LN, Kamiya Y, Yamaguchi S, He Z (2006) ELONGATED UPPERMOST INTERNODE encodes a cytochrome P450 monooxygenase that epoxidizes gibberellins in a novel deactivation reaction in rice. Plant Cell 18:442–456CrossRefPubMedPubMedCentralGoogle Scholar
  40. Zhu WY, Lin J, Yang DW, Zhao L, Zhang YD, Zhu Z, Chen T, Wang CL (2009) Development of chromosome segment substitution lines derived from backcross between two sequenced rice cultivars, indica recipient 9311 and japonica Donor Nipponbare. Plant Mol Biol Rep 27:126–131CrossRefGoogle Scholar
  41. Zhu L, Hu J, Zhu K, Fang Y, Gao Z, He Y, Zhang G, Guo L, Zeng D, Dong G, Yan M, Liu J, Qian Q (2011) Identification and characterization of SHORTENED UPPERMOST INTERNODE 1, a gene negatively regulating uppermost internode elongation in rice. Plant Mol Biol 77:475–487CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Chunfang Zhao
    • 1
  • Qingyong Zhao
    • 1
  • Ling Zhao
    • 1
  • Lihui Zhou
    • 1
  • Tao Chen
    • 1
  • Shu Yao
    • 1
  • Wenhua Liang
    • 1
  • Yadong Zhang
    • 1
  • Cailin Wang
    • 1
  1. 1.Institute of Food Crops, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice ImprovementJiangsu Academy of Agricultural SciencesNanjingChina

Personalised recommendations