Abstract
Panicle exsertion is an important agronomic trait involved in pollination and hybrid rice seed production. The identification of genes controlling panicle exsertion will play a central role in hybrid rice breeding. C115, a chromosome segment substitution line carrying introgression segments of Nipponbare in genetic background of indica variety 9311, had significantly shortened panicle exsertion, uppermost internode length and plant height. Genetic analysis in F2 and F3 populations derived from a cross of C115 and 9311 indicated that the shortened panicle exsertion of C115 was recessive and controlled by a single Medelian factor, and the allele from Nipponbare decreased the phenotypic value. Primary mapping suggested qPE12, the Nipponbare introgression segment locating on the long arm of chromosome 12, was responsible for this phenotypic variation. Based on map-based cloning strategy, fine mapping was carried out with a total of 1130 recessive individuals selected from F2 and F3 populations, delimiting qPE12 to a 190-kb region. This result provides important information for isolation of a new gene controlling panicle exsertion in the future.



Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Avila CA, Arevalo-Soliz LM, Lorence A, Goggin FL (2013) Expression of α-DIOXYGENASE 1 in tomato and Arabidopsis contributes to plant defenses against aphids. Mol Plant 26(8):977–986
Chen H, Jiang S, Zheng J, Lin Y (2013) Improving panicle exsertion of rice cytoplasmic male sterile line by combination of artificial microRNA and artificial target mimic. Plant Biotechnol J 11:336–343
da Cruz RP, Milach SCK, Federizzi LC (2008) Inheritance of panicle exsertion in rice. Sci Agric 65:502–507
Gao S, Fang J, Xu F, Wang W, Chu C (2016) Rice HOX12 regulates panicle exsertion by directly modulating the expression of ELONGATED UPPERMOST INTERNODE1. Plant Cell 28:680–695
Gaquerel E, Steppuhn A, Baldwin IT (2012) Nicotiana attenuate α-DIOXYGENASE1 through its production of 2-hydroxylinolenic acid is required for intact plant defense expression against attack from Manduca sexta larvae. New Phytol 196:574–585
Hattori Y, Nagai K, Furukawa S, Song XJ, Kawano R, Sakakibara H, Wu J, Matsumoto T, Yoshimura A, Kitano H, Matsuoka M, Mori H, Ashikari M (2009) The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature 460(7258):1026–1030
Hong Z, Ueguchi-Tanaka M, Umemura K, Uozu S, Fujioka S, Takatsuto S, Yoshida S, Ashikari M, Kitano H, Matsuoka M (2003) A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell 15(12):2900–2910
Hong Z, Ueguchi-Tanaka M, Fujioka S, Takatsuto S, Yoshida S, Hasegawa Y, Ashikari M, Kitano H, Matsuoka M (2005) The rice brassinosteroid-deficient dwarf2 mutant, defective in the rice homolog of Arabidopsis DIMINUTO/DWARF1, is rescued by the endogenously accumulated alternative bioactive brassinosteroid, dolichosterone. Plant Cell 17(8):2243–2254
Itoh H, Ueguchi-Tanaka M, Sentoku N, Kitano H, Matsuoka M, Kobayashi M (2001) Cloning and functional analysis of two gibberellin 3 beta-hydroxylase genes that are differently expressed during the growth of rice. Proc Natl Acad Sci USA 98(15):8909–8914
Itoh H, Tatsumi T, Sakamoto T, Otomo K, Toyomasu T, Kitano H, Ashikari M, Ichihara S, Matsuoka M (2004) A rice semi-dwarf gene, Tan-Ginbozu (D35), encodes the gibberellin biosynthesis enzyme, ent-kaurene oxidase. Plant Mol Biol 54(4):533–547
Je BI, Piao HL, Park SJ, Park SH, Kim CM, Xuan YH, Park SH, Huang J, Do Choi Y, An G, Wong HL (2010) RAV-Like1 maintains brassinosteroid homeostasis via the coordinated activation of BRI1 and biosynthetic genes in rice. Plant Cell Online 22(6):1777–1791
Ji H, Kim H, Yun DW, Yoon UH, Kim TH, Eun MY, Lee GS (2014) Characterization and fine mapping of a shortened uppermost internode mutant in rice. Plant Biotechnol Rep 8:125–134
Konishi S, Izawa T, Lin SY, Ebana K, Fukuta Y, Sasaki T, Yano M (2006) An SNP caused loss of seed shattering during rice domestication. Science 312:1392–1396
Li J, Yuan L (2010) Hybrid rice: genetics, breeding, and seed production. Plant Breed Rev 17:15–158
Liu J, Chen J, Zheng X, Wu F, Lin Q, Heng Y, Tian P, Cheng Z, Yu X, Zhou K, Zhang X, Guo X, Wang J, Wang H, Wan J (2017) GW5 acts in the brassinosteroid signaling pathway to regulate grain width and weight in rice. Nat plant 3:17043
Luo D, Xu H, Liu Z, Guo J, Li H, Chen L, Fang C, Zhang Q, Bai M, Yao N, Wu H, Wu H, Ji C, Zheng H, Chen Y, Ye S, Li X, Zhao X, Li R, Liu Y (2013) A detrimental mitochondrial-nuclear interaction causes cytoplasmic male sterility in rice. Nat Genet 45:573–577
Ma H (2007) The achievements of rice eui genes in research and utilization. Mol Plant Breed 5:690–694
Machado L, Castro A, Hamberg M, Bannenberg G, Gaggero C, Castresana C, de León I (2015) The Physcomitrella patens unique alpha-dioxygenase participates in both developmental processes and defense responses. BMC Plant Biol 15(1):45
Peng S, Khush GS, Virk P, Tang Q, Zou Y (2008) Progress in idotype breeding to increase rice yield potential. Field Crop Res 108(1):32–38
Qiao B, Zhu X, Wang Y, Hong D (2008) Mapping QTL for three panicle exsertion-related traits in rice (Oryza sativa L.) under different growing environments. Acta Agron Sin 34:389–396
Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush GS, Kitano H, Matsuoka M (2002) Green revolution: a mutant gibberellin-synthesis gene in rice. Nature 416(6882):701–702
Sasaki A, Itoh H, Gomi K, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Jeong DH, An G, Kitano H, Ashikari M, Matsuoka M (2003) Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant. Science 299(5614):1896–1898
Song X, Huang W, Shi M, Zhu M, Lin H (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39(5):623–630
Tong H, Jin Y, Liu W, Li F, Fang J, Yin Y, Qian Q, Zhu L, Chu C (2009) DWARF AND LOW-TILLERING, a new member of the GRAS family, plays positive roles in brassinosteroid signaling in rice. Plant J 58(5):803–816
Ueguchi-Tanaka M, Fujisawa Y, Kobayashi M, Ashikari M, Iwasaki Y, Kitano H, Matsuoka M (2000) Rice dwarf mutant d1, which is defective in the alpha subunit of the heterotrimeric G protein, affects gibberellin signal transduction. Proc Natl Acad Sci USA 97(21):11638–11643
Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow TY, Hsing YI, Kitano H, Yamaguchi I, Matsuoka M (2005) GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature 437(7059):693–698
Wang Y, Li J (2011) Branching in rice. Curr Opin Plant Biol 14:94–99
Weng J, Gu S, Wan X, Gao H, Guo T, Su N, Lei C, Zhang X, Cheng Z, Guo X, Wang J, Jiang L, Zhai H, Wan J (2008) Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res 18:1199–1209
Yamamoto T, Taguchi-Shiobara T, Ukai Y, Saaki T, Yano M (2001) Mapping quantitative trait loci for days-to-heading, and culm, panicle and internode lengths in a BC1F3 population using an elite rice variety, Koshihikari, as the recurrent parent. Breed Sci 51:63–71
Yamamuro C, Ihara Y, Wu X, Noguchi T, Fujioka S, Takatsuto S, Ashikari M, Kitano H, Matsuoka M (2000) Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. Plant Cell 12(9):1591–1606
Yin C, Gan L, Ng D, Zhou X, Xia K (2007) Decreased panicle-derived indole-3-acetic acid reduces gibberellin A1 level in the uppermost internode, causing panicle enclosure in male sterile rice Zhenshan 97A. J Exp Bot 58:2441–2449
Yin H, Gao P, Liu C, Yang J, Liu Z, Luo D (2013) SUI-family genes encode phosphatidylserine synthases and regulate stem development in rice. Planta 237:15–27
Yu H, Ruan B, Wang Z, Ren D, Zhang Y, Leng Y, Zeng D, Hu J, Zhang G, Zhu L, Gao Z, Chen G, Guo L, Chen W, Qian Q (2017) Fine mapping of a novel defective glume 1 (dg1) mutant, which affects vegetative and spikelet development in rice. Front Plant Sci 8:486
Zhang H, Liu H, Liu Y, Zhang R, Zhong X (2009) Research status and prospect of e-type hybrid rice. J Agric Sci Technol 4:10–15
Zhang L, Cheng Z, Qin R, Qiu Y, Wang J, Cui X, Gu L, Zhang X, Guo X, Wang D, Jiang L, Wu C, Wang H, Cao X, Wan J (2012a) Identification and characterization of an epi-allele of FIE1 reveals a regulatory linkage between two epigenetic marks in rice. Plant Cell 24:4407–4421
Zhang X, Wang J, Huang J, Lan H, Wang C, Yin C, Wu Y, Tang H, Qian Q, Li J, Zhang H (2012b) Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice. Proc Natl Acad Sci USA 109(52):21534–21539
Zhao C, Zhou L, Yu X, Zhao Q, Chen T, Yao S, Zhang Y, Zhu Z, Wang C (2012) Identification of tiller angle quantitative trait loci based on chromosome segment substituted lines and high-density physical map in rice. Bull Bot 47(6):594–601
Zhao C, Chen T, Zhao Q, Zhou L, Zhang Y, Zhu Z, Yao S, Wang C (2016) Analysis of QTLs for panicle exsertion and its relationship with yield and yield-related traits in rice (Oryza sativa L.). Genet Mol Res 15(2):gmr.15027423
Zhu Y, Nomura T, Xu Y, Zhang Y, Peng Y, Mao B, Hanada A, Zhou H, Wang R, Li P, Zhu X, Mander LN, Kamiya Y, Yamaguchi S, He Z (2006) ELONGATED UPPERMOST INTERNODE encodes a cytochrome P450 monooxygenase that epoxidizes gibberellins in a novel deactivation reaction in rice. Plant Cell 18:442–456
Zhu WY, Lin J, Yang DW, Zhao L, Zhang YD, Zhu Z, Chen T, Wang CL (2009) Development of chromosome segment substitution lines derived from backcross between two sequenced rice cultivars, indica recipient 9311 and japonica Donor Nipponbare. Plant Mol Biol Rep 27:126–131
Zhu L, Hu J, Zhu K, Fang Y, Gao Z, He Y, Zhang G, Guo L, Zeng D, Dong G, Yan M, Liu J, Qian Q (2011) Identification and characterization of SHORTENED UPPERMOST INTERNODE 1, a gene negatively regulating uppermost internode elongation in rice. Plant Mol Biol 77:475–487
Acknowledgements
This research was financially supported by the National Natural Sciences Foundation of China (31200144), the Jiangsu Agriculture Science and Technology Innovation Fund (CX[13]5001) the National Key Technology Support Program project (2015BAD01B02) and the key research and development projects of Jiangsu Province(BE2016370).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflict of interest.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Zhao, C., Zhao, Q., Zhao, L. et al. Characterization and fine mapping of qPE12, a new locus controlling rice panicle exsertion. Euphytica 214, 47 (2018). https://doi.org/10.1007/s10681-017-2104-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10681-017-2104-0


