, 214:18 | Cite as

Mining the global diversity of barley for Fusarium resistance using leaf and spike inoculations

  • Ismail M. A. Bedawy
  • Heinz-Wilhelm Dehne
  • Jens Léon
  • Ali Ahmad Naz


Fusarium graminearum is a devastating fungal pathogen that causes significant yield and quality losses in cereals. We utilized a diversity set of barley (140 genotypes) to explore vital resistance alleles against this aggressive pathogen. The resistance assessment was carried out on spikes and leaves via artificial inoculations under control conditions. The phenotypic data was subjected to genome-wide association analysis using a genetic map based on DArT and SNP markers. This analysis revealed eleven and nine marker trait associations for leaf disease scoring (LDS) and spike disease scoring (SDS), respectively. The strongest QTL for LDS was found on chromosome 1H where a minor allele of wild origin decreased disease symptoms by 78%. The major QTL allele for SDS was linked with marker locus SCRI_RS174710 on chromosome 5H. In addition, four favorable epistatic interactions effects were found in decreasing disease symptoms. Overall, three QTL were common for LDS and SDS, which indicates a partial genetic relatedness of these resistances in barley. The QTL alleles for LDS and SDS will help to establish organ specific resistances in cultivated barley.


Fusarium graminearum Triticum aestivum Resistance QTL GWAS Leaf and spike disease symptoms 

Supplementary material

10681_2017_2103_MOESM1_ESM.tif (313 kb)
Plot of linkage disequilibrium (LD) presented by r2 against genetic distance (in centiMorgan) Supplementary material 1 (TIFF 312 kb)


  1. Aulchenko YS, De Koning DJ, Haley C (2007) Genomewide rapid association using mixed model and regression: a fast and simple method for genomewide pedigree-based quantitative trait loci association analysis. Genetics 177:577–585CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bai G, Shaner G (2004) Management and resistance in wheat and barley to fusarium head blight. Annu Rev Phytopathol 42:135–161CrossRefPubMedGoogle Scholar
  3. Benjamini Y, Yekutieli D (2005) Quantitative trait Loci analysis using the false discovery rate. Genetics 171:783–790CrossRefPubMedPubMedCentralGoogle Scholar
  4. Boutigny AL, Ward TJ, Van Coller GJ, Flett B, Lamprecht SC, O’Donnell K, Viljoen A (2011) Analysis of the Fusarium graminearum species complex from wheat, barley and maize in South Africa provides evidence of species-specific differences in host preference. Fungal Genet Biol 48:914–920CrossRefPubMedGoogle Scholar
  5. Browne RA, Cooke BM (2005) Resistance of wheat to Fusarium spp. in an in vitro seed germination assay and preliminary investigations into the relationship with fusarium head blight resistance. Euphytica 141:23–32CrossRefGoogle Scholar
  6. Browne RA, Murphy JP, Cooke BM, Devaney D, Walsh EJ, Griffey CA, Hancock JA, Harrison SA, Hart P, Kolb FL, Mckendry AL, Milus EA, Sneller C, Van Sanford DA (2005) Evaluation of components of fusarium head blight resistance in soft red winter wheat germplasm using a detached leaf assay. Plant Dis 89:404–411CrossRefGoogle Scholar
  7. Buerstmayr M, Buerstmayr H (2016) The semi-dwarfing alleles Rht-D1b and Rht-B1b show marked differences in their associations with anther-retention in wheat heads and with Fusarium head blight susceptibility. Phytopathology 106:1544–1552CrossRefPubMedGoogle Scholar
  8. Chen X, Min D, Yasir TA, Hu YG (2012) Genetic Diversity, population structure and linkage disequilibrium in elite Chinese winter wheat investigated with SSR markers. PLoS ONE 7(9):e44510. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Comadran J, Kilian B, Russell J, Ramsay L, Stein N, Ganal M et al (2012) Natural variation in a homolog of Antirrhinum CENTRORADIALIS contributed to spring growth habit and environmental adaptation in cultivated barley. Nat Genet 44:1388–1392. CrossRefPubMedGoogle Scholar
  10. Dahleen LS, Morgan W, Mittal S, Bregitzwer P, Brown RH, Hill NS (2012) Quantitative trait loci (QTL) for Fusarium ELISA compared to QTL for Fusarium head blight resistance and deoxynivalenol content in barley. Plant Breeding 131:237–243CrossRefGoogle Scholar
  11. De la Pena RC, Smith KP, Capettini F, Muehlbauer GJ, Gallo-Meagher M, Dill-Macky R, Somer DA, Rasmusson DC (1999) Quantitative trait loci associated with resistance to Fusarium head blight and kernel discoloration in barley. Theor Appl Genet 99:561–569CrossRefPubMedGoogle Scholar
  12. Diamond H, Cooke BM (1999) Towards the development of a novel in vitro strategy for early screening of Fusarium ear blight resistance in adult winter wheat plants. Eur J Plant Pathol 105:363–372CrossRefGoogle Scholar
  13. Franklin SB, Gibson DJ, Robertson PA, Pohlmann JT, Fralish JS (1995) Parallel analysis: a method for determining significant principal components. J Veg Sci 6:99–106CrossRefGoogle Scholar
  14. Goswami R, Kistler H (2004) Heading for disaster: Fusarium graminearum on cereal crops. Mol Plant Pathol 5:515–525CrossRefPubMedGoogle Scholar
  15. Griffey CA, Thomason WE, Pitman RM, Beahm BR, Paling JJ, Chen J, Gundrum PG, Fanelli JK, Kenner JC, Dunaway DW, Brooks WS, Aughn ME, Hokanson EG, Behl HD, Corbin RA, Hall MD, Liu S, Custis JT, Waldenmaier CM, Starner DE, Gulick SA, Ashburn SR, Jones EH, Whitt DL, Bockelman HE, Souza EJ, Brown-Guedira GL, Kolmer JA, Long DL, Jin Y, Chen X, Cambron SE (2009) Registration of ‘5205’ Wheat. J Plant Regist 3:3Google Scholar
  16. Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620CrossRefGoogle Scholar
  17. Horsley RD, Schmierer D, Maier C, Kudrna D, Urrea CA, Steffenson BJ, Schwarz PB, Franckowiak JD, Green MJ, Zhang B, Kleinhofs A (2006) Identification of QTLs associated with Fusarium head blight resistance in barley accession CIho 4196. Crop Sci 46:145–156CrossRefGoogle Scholar
  18. Kolb FL, Bai GH, Muehlbauer GJ, Anderson JA, Smith KP, Fedak G (2001) Host plant resistance genes for Fusarium head blight: mapping and manipulation with molecular markers. Crop Sci 41:611–619CrossRefGoogle Scholar
  19. Kumar K, Xi K, Turkingtont K, Tekauz A, Helm JH, Tewari JP (2011) Evaluation of a detached leaf assay to measure fusarium head blight resistance components in barley. Can J Plant Pathol 33:364–374CrossRefGoogle Scholar
  20. Liddell C (2003) Systematics of Fusarium graminearum species and allies associated with Fusarium head blight. In: Leonard K, Bushnel W (eds) Fusarium head blight of wheat and barley. APS Press, Minnesota, pp 35–43Google Scholar
  21. Ma Z, Steffenson BJ, Prom LK, Lapitan NLV (2000) Mapping of quantitative trait loci for Fusarium head blight resistance in barley. Phytopathology 90:1079–1088CrossRefPubMedGoogle Scholar
  22. Ma HX, Bai GH, Zhang X, Lu WZ (2006) Main effects, epistasis, and environmental interactions of quantitative trait Loci for fusarium head blight resistance in a recombinant inbred population. Phytopathology 96:534–541CrossRefPubMedGoogle Scholar
  23. Mamo BE, Steffenson BJ (2015) Genome-wide association mapping of fusarium head blight resistance and agromorphological traits in barley landraces from Ethiopia and Eritrea. Crop Sci 55:1494–1512CrossRefGoogle Scholar
  24. Massman J, Cooper B, Horsley R, Neate S, Dill-Macky R, Chao S, Dong Y, Schwarz P, Muehlbauer GJ, Smith KP (2011) Genome-wide association mapping of Fusarium head blight resistance in contemporary barley breeding germplasm. Mol Breeding 27:439–454CrossRefGoogle Scholar
  25. Mesfin A, Smith KP, Dill-Macky R, Evans CK, Waugh R, Gustus CD, Muehlbauer GJ (2003) Quantitative trait loci for Fusarium head blight resistance in barley detected in a two-rowed by six-rowed population. Crop Sci 43:307–318CrossRefGoogle Scholar
  26. Morrell PL, Toleno DM, Lundy KE, Clegg MT (2005) Low levels of linkage disequilibrium in wild barley (Hordeum vulgare ssp. spontaneum) despite high rates of self-fertilization. Proc Natl Acad Sci USA 102:2442–2447CrossRefPubMedPubMedCentralGoogle Scholar
  27. Murakami J, Ban T (2005) Development of novel bioassay system for FHB molecular interaction. In: Proceedings of the 4th Canadian Workshop on fusarium head blight. 1–3 Nov. 2005, Ottawa Congress Centre, Ottawa. p. 62Google Scholar
  28. Osborne L, Jin Y (2002) Epidemiological studies on fusarium head blight of wheat in south Dakota for 2002, National Fusarium Head Blight Forum ProceedingsGoogle Scholar
  29. Ostrowski MF, David J, Santoni S, McKhann H, Reboud X, Le Corre V, Camilleri C, Brunel D, Bouchez D, Faure B, Bataillon T (2006) Evidence for a large-scale population structure among accessions of Arabidopsis thaliana: possible causes and consequences for the distribution of linkage disequilibrium. Mol Ecol 15:1507–1517CrossRefPubMedGoogle Scholar
  30. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909CrossRefPubMedGoogle Scholar
  31. Rostoks N, Ramsay L, MacKenzie K, Cardle L, Bhat PR, Roose ML, Svensson JT, Stein N, Varshney RK, Marshall DF, Graner A, Close TJ, Waugh R (2006) Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop varieties. Proc Natl Acad Sci USA 103:18656–18661CrossRefPubMedPubMedCentralGoogle Scholar
  32. SAS Institute (2008) The SAS system for Windows, release 9.2. SAS Institute, Cary, N.C. USAGoogle Scholar
  33. Sayed MA, Schumann H, Pillen K, Naz AA, Léon J (2012) AB-QTL analysis reveals new alleles associated to proline accumulation and leaf wilting under drought stress conditions in barley (Hordeum vulgare L.). BMC Genet 13:61CrossRefPubMedPubMedCentralGoogle Scholar
  34. Singh AK, Knox RE, Clarke FR, Clarke JM, Somers DJ, Fedak G, Singh A, DePauw R (2008) Fusarium head blight QTL mapping in durum wheat and Triticum carthlicum sources of resistance. The 11th International Wheat Genetics Symposium proceedingsGoogle Scholar
  35. Steffenson BJ (1998) Fusarium head blight of barley: epidemics, impact, and breeding for resistance. Tech Q 35:177–184Google Scholar
  36. Steffenson BJ (2002) Fusarium head blight of barley: impact, epidemics, management, and strategies for identifying and utilizing genetic resistance. In: Leonard KL, Bushnell WR (eds) Fusarium head blight of wheat and barley. The American Phytopathological Society, St. Paul, pp 256–258Google Scholar
  37. Ūsele G, Beinaroviča I, Mežaka I, Legzdiņa L (2013) Comparison of spring barley (Hordeum vulgare L) screening methods for Fusarium head blight resistance breeding. Zemdirbyste-Agriculture 100(3):317–324CrossRefGoogle Scholar
  38. Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhof A, Kilian A (2004) Diversity Arrays Technology (DArT) for whole-genome profiling of barley. Proc Natl Acad Sci USA 101:9915–9920CrossRefPubMedPubMedCentralGoogle Scholar
  39. Yang Z, Gilbert J, Fedak G, Somers DJ (2005) Genetic characterization of QTL associated with resistance to Fusarium head blight in a doubledhaploid spring wheat population. Genome 48:187–196CrossRefPubMedGoogle Scholar
  40. Zhu H, Gilchrist L, Hayes P, Kleinhofs A, Kudrna D, Liu Z, Prom L, Steffenson B, Toojinda T, Vivar H (1999) Does function follow form? Principal QTLs for Fusarium head blight (FHB) resistance are coincident with QTLs for inflorescence traits and plant height in a doubled-haploid population of barley. Theor Appl Genet 99:1221–1232CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  • Ismail M. A. Bedawy
    • 1
    • 3
  • Heinz-Wilhelm Dehne
    • 2
  • Jens Léon
    • 1
  • Ali Ahmad Naz
    • 1
  1. 1.Institute of Crop Science and Resource Conservation, Chair of Plant BreedingUniversity of BonnBonnGermany
  2. 2.Institute of Crop Science and Resource Conservation, Chair of Plant PathologyUniversity of BonnBonnGermany
  3. 3.Department of Agronomy, Faculty of AgricultureSohag UniversitySohagEgypt

Personalised recommendations