, 214:14 | Cite as

A SNP mutation affects rhizomania-virus content of sugar beets grown on resistance-breaking soils

  • Chiara Broccanello
  • J. Mitchell McGrath
  • Lee Panella
  • Kelley Richardson
  • Andrew Funk
  • Claudia Chiodi
  • Filippo Biscarini
  • Valeria Barone
  • Andrea Baglieri
  • Andrea Squartini
  • Giuseppe Concheri
  • Piergiorgio Stevanato


Rhizomania is one of the most devastating biotic stresses affecting sugar beet (Beta vulgaris L.). It is caused by Beet necrotic yellow vein virus (BNYVV) vectored by the plasmodiophorid Polymyxa betae K. The only means available to control the disease is the use of genetically resistant varieties. “Rizor” or “Holly” (Rz1) and WB42 (Rz2) have been the most widely used resistance sources in the commercial varieties. Recently, naturally occurring resistance-breaking (RB) rhizomania strains have been identified causing major concerns. The aim of this study was to identify SNP mutations that show associations with resistance to rhizomania in sugar beet plants grown under resistance-breaking (RB)-BNYVV soils. Rhizomania virus content was evaluated by indirect triple-antibody sandwich-ELISA within two F 2 segregating populations respectively grown on an AYPR and IV-BNYVV strain infected soils. Bulked segregant analysis (BSA) was performed. The resistant and susceptible plants were genotyped with a 384-SNPs panel. Of the 384 SNPs, SNP249 was found to associate with the resistance both to the AYPR strain (R 2 = 0.37; P = 0.0004) and to the IV-BNYVV (R 2 = 0.09; P = 0.0074). Our results suggested that the SNP249 could be readily applicable for marker-assisted breeding of resistance to AYPR strain of rhizomania.


Sugar beet Rhizomania Resistance-breaking (RB) strain Molecular markers SNPs 



Single nucleotide polymorphism


Beet necrotic yellow vein virus


Imperial valley BNYVV


Bulk segregant analysis


Resistance breaking


Marker-assisted selection


Enzyme-linked immunosorbent assay



The authors wish thanks to Dr. Enrico Biancardi (Former Director of Research Institute for Industrial Crops, CREA, Rovigo, Italy) for the critical reviews and remarks to improve the manuscript.

Supplementary material

10681_2017_2098_MOESM1_ESM.xlsx (35 kb)
Supplementary material 1 (XLSX 35 kb)
10681_2017_2098_MOESM2_ESM.xlsx (9 kb)
Supplementary material 2 (XLSX 8 kb)


  1. Arruda MP, Lipka AE, Brown PJ, Krill AM, Thurber C, Brown-Guedira G, Dong Y, Foresman BJ, Kolb FL (2016) Comparing genomic selection and marker-assisted selection for Fusarium head blight resistance in wheat (Triticum aestivum L.). Mol Breed 36:84CrossRefGoogle Scholar
  2. Biancardi E, Tamada T (2016) Rhizomania. Springer, New YorkCrossRefGoogle Scholar
  3. Biancardi E, Panella LW, Lewellen RT (2012) Beta maritima: the origin of beets. Springer, HeidelbergCrossRefGoogle Scholar
  4. Bornemann K, Hanseb B, Varrelmann M, Stevens M (2015) Occurrence of resistance-breaking strains of Beet necrotic yellow vein virus in sugar beet in northwestern Europe and identification of a new variant of the viral pathogenicity factor P25. Plant Pathol 64:25–34CrossRefGoogle Scholar
  5. Broccanello C, Stevanato P, Biscarini F, Cantu D, Saccomani M (2015) A new polymorphism on chromosome 6 associated with bolting tendency in sugar beet. BMC Genet 16:142CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chhetri M, Bariana H, Wong D, Sohail Y, Hayden M, Bansal U (2017) Development of robust molecular markers for marker-assisted selection of leaf rust resistance gene Lr23 in common and durum wheat breeding programs. Mol Breed 37:21CrossRefGoogle Scholar
  7. Gidner S, Lenefors BL, Nilsson NO, Bensefelt J, Johansson E, Gyllensetz U, Kraft T (2005) QTL mapping of BNYVV resistance from the WB41 source in sugar beet. Genome 48:279–285CrossRefPubMedGoogle Scholar
  8. Grimmer MK, Trybush S, Hanley S, Francis SA, Karp A, Asher MJC (2007) An anchored linkage map for sugar beet based on AFLP, SNP and RADP markers and QTL mapping of a new source of resistance to Beet necrotic yellow vein virus. Theor Appl Genet 114:1151–1160CrossRefPubMedGoogle Scholar
  9. Grimmer MK, Kraft T, Francis SA, Asher MJC (2008) QTL mapping of BNYVV resistance from the WB258 source in sugar beet. Plant Breed 127:650–652CrossRefGoogle Scholar
  10. Hurtado-Gonzales OP, Valentini G, Gilio TAS, Martins AM, Song Q, Pastor-Corrales MA (2017) Fine mapping of Ur-3, a historically important rust resistance locus in common bean. Genes Genome Genet 7:557–569Google Scholar
  11. Kassa MT, You FM, Hiebert CW, Pozniak CJ, Fobert PR, Sharpe AG, Menzies JG, Humphreys DG, Harrison NR, Fellers JP, McCallum BD, McCartney CA (2017) Highly predictive SNP markers for efficient selection of the wheat leaf rust resistance gene Lr16. BMC Plant Biol 17:45CrossRefPubMedPubMedCentralGoogle Scholar
  12. Koenig R, Haeberlè AM, Commandeur U (1997) Detection and characterization of a distinct type of beet necrotic yellow vein virus RNA 5 in a sugarbeet growing area in Europe. Adv Virol 142:1499–1504Google Scholar
  13. Koening R, Lennefors BL (2000) Molecular analyses of European A, B and P type sources of Beet necrotic yellow vein virus and detection of the rare P type in Kazakhstan. Adv Virol 145:1561–1570Google Scholar
  14. Lennefors BL (2006) Molecular breeding for resistance to rhizomania in sugar beets. Doctoral thesis Swedish University of Agricultural Sciences, Uppsala 2006Google Scholar
  15. Lewellen RT, Biancardi E (1990) Breeding and performance of rhizomania resistant sugar beet. Proc IIRB 53:69–87Google Scholar
  16. Lewellen RT, Whitney ED, Skoyen IO (1985) Registration of C37 sugarbeet parental line. Crop Sci 25:375CrossRefGoogle Scholar
  17. Lewellen RT, Skoyen IO, Erichsen AW (1987) Breeding sugarbeet for resistance to rhizomania: evaluation of host-plant reactions and selections for and inheritance of resistance. Proc IIRB 50:139–156Google Scholar
  18. Liu HY, Lewellen RT (2007) Distribution and molecular characterization of resistance-breaking isolates of Beet necrotic yellow vein virus in the United States. Plant Dis 91:847–851CrossRefGoogle Scholar
  19. Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832CrossRefPubMedPubMedCentralGoogle Scholar
  20. Minic Z (2007) Physiological roles of plants glycoside hydrolases. Planta 227:723–740CrossRefPubMedGoogle Scholar
  21. Pavli OI, Stevanato P, Biancardi E, Skaracis GN (2011) Achievements and prospects in breeding for rhizomania resistance in sugar beet. Field Crops Res 122:165–172CrossRefGoogle Scholar
  22. Poimenopoulou E (2017) Molecular characterization of soil-borne viruses infecting sugar beet in Europe and USA. Plant Biology—Master’s ProgrammeGoogle Scholar
  23. Qi LL, Talukder ZI, Hulke BS, Foley ME (2017) Development and dissection of diagnostic SNP markers for the downy mildew resistance genes Pl Arg and Pl 8 and maker assisted gene pyramiding in sunflower (Helianthus annuus L.). Mol Genet Genom 292:551–563CrossRefGoogle Scholar
  24. Rafalski A (2002) Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol 5:94–100CrossRefPubMedGoogle Scholar
  25. Sánchez-Mora FD, Saifert L, Zanghelini J, Assumpção WT, Guginski-Piva CA, Giacometti R, Novak EI, Klabunde GH, Eibach R, Dal Vesco L, Nodari RO, Welter LJ (2017) Behavior of grape breeding lines with distinct resistance alleles to downy mildew (Plasmopara viticola). Crop Breed Appl Biotechnol 17:141–149CrossRefGoogle Scholar
  26. Scholten OE, De Bock TSM, Klein-Lankhorst RM, Lange W (1999) Inheritance of resistance to Beet necrotic yellow vein virus in Beta vulgaris conferred by a second gene for resistance. Theor Appl Genet 99:740–746CrossRefPubMedGoogle Scholar
  27. Shi A, Mou B, Correll J, Koike ST, Motes D, Qin J, Weng Y, Yang W (2016) Association analysis and identification of SNP markers for stemphylium leaf spot (Stemphylium botryosum f. sp. spinacia) resistance in spinach (Spinacia oleracea). Am J Plant Sci 7:1600–1611CrossRefGoogle Scholar
  28. Stevanato P, Trebbi D, Norouzi P, Broccanello C, Saccomani M (2012) Identification of SNP markers linked to the Rz1 gene in sugar beet. Int Sugar J 1366:715–718Google Scholar
  29. Stevanato P, De Biaggi M, Broccanello C, Biancardi E, Saccomani M (2015) Molecular genotyping of ‘‘Rizor’’ and “Holly” rhizomania resistances in sugar beet. Euphytica 206:427–431CrossRefGoogle Scholar
  30. Stevanato P, Biancardi E, Norouzi P (2016) Assisted selection. In: Biancardi E, Tamada T (eds) Rhizomania. Springer, New York, pp 249–261CrossRefGoogle Scholar
  31. Tamada T, Uchino H, Kusume T, Saito M (1999) RNA 3 deletion mutants of beet necrotic yellow vein virus do not cause rhizomania disease in sugar beets. Phytopathology 89:1000–1006CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  • Chiara Broccanello
    • 1
  • J. Mitchell McGrath
    • 2
  • Lee Panella
    • 3
  • Kelley Richardson
    • 4
  • Andrew Funk
    • 2
  • Claudia Chiodi
    • 1
  • Filippo Biscarini
    • 5
  • Valeria Barone
    • 6
  • Andrea Baglieri
    • 6
  • Andrea Squartini
    • 1
  • Giuseppe Concheri
    • 1
  • Piergiorgio Stevanato
    • 1
  1. 1.DAFNAE, Università degli Studi di PadovaLegnaroItaly
  2. 2.USDA-ARS Sugarbeet and Bean ResearchEast LansingUSA
  3. 3.USDA-ARS Sugarbeet ResearchFort CollinsUSA
  4. 4.USDA-ARS Sugarbeet ResearchSalinasUSA
  5. 5.CNR-IBBAMilanItaly
  6. 6.Di3A, Università di CataniaCataniaItaly

Personalised recommendations