Skip to main content
Log in

Stability of Solanum aethiopicum Shum accessions under varied water deficit stress levels and identification of pertinent breeding traits for resistance to water shortage

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Drought is a major constraint to productivity of Solanum aethiopicum ‘Shum’ group due to loss in market and nutrient value of stressed plants. This study evaluated S. aethiopicum Shum group accessions to identify genotypes (G) that excel across moisture deficit stress levels (WLs). A split-plot arrangement composed of four WLs and twenty accessions of S. aethiopicum as main plot and sub-plot factors, respectively, was implemented in a screenhouse, and repeated for two experiments. In each experiment, there was a highly significant effect of at least two WLs on mean performance among at least two accessions for most of the traits at p < 0.05. Further, very highly significant WL × G interactions were obtained for leaf relative water content (LRWC), leaves per plant (LPP) and plant height (PH), and non-significant for leaf blade length and leaf blade width. The order of priority as breeding traits for stability superiority across WLs was suggested as LRWC > PH > LPP. Consequently, based on LRWC, the most superiorly stable accessions were identified as accession 160 followed by accessions 145, 137, 108P and 184G while the least stable ones were identified as accessions 163G, 141, 163 and 108. The broad sense heritability (H 2) for each of the three recommended traits for drought resistance breeding was above 0.9 thus supportive for a good response to selection. Drought stress negatively affected the performance of S. aethiopicum Shum group but the exhibited variation allowed for selection of superiorly stable genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abukutsa-Onyango MO, Adipala E, Tusiime G, Majaliwa JGM et al (2010) Strategic repositioning of African indigenous vegetables in the Horticulture Sector. In: Second RUFORUM biennial regional conference on “Building capacity for food security in Africa”, Entebbe, Uganda, 20–24 September 2010. RUFORUM, pp 1413–1419

  • Acquadro A, Barchi L, Gramazio P, Portis E, Vilanova S, Comino C, Plazas M, Lanteri S (2017) Coding SNPs analysis highlights genetic relationships and evolution pattern in eggplant complexes. PLOS ONE 12(7), e0180774

  • Adeniji OT, Kusolwa P, Reuben S (2013) Morphological descriptors and micro satellite diversity among scarlet eggplant groups. Afr Crop Sci J 21(1):37–49

    Google Scholar 

  • Ahsan MZ, Majidano MS, Bhutto H, Soomro AW, Panhwar FH, Channa AR, Sial KB (2015) Genetic variability, coefficient of variance, heritability and genetic advance of some Gossypium hirsutum L. accessions. J Agric Sci 7(2). https://doi.org/10.5539/jas.v7n2p147

  • Al-Tabbal JA, Al-Fraihat AH (2011) Genetic variation, heritability, phenotypic and genotypic correlation studies for yield and yield components in promising barley genotypes. J Agric Sci 4(3). https://doi.org/10.5539/jas.v4n3p193

  • Altaye T (2015) Determination of genetic diversity and population structure in eggplant. Retrieved from http://openaccess.iyte.edu.tr/handle/11147/4291

  • Amelework A, Shimelis H, Tongoona P, Laing M (2015) Physiological mechanisms of drought tolerance in sorghum, genetic basis and breeding methods: a review. Afr J Agric Res 10(31):3029–3040

    Article  Google Scholar 

  • Anjum SA, Xie X, Wang L, Saleem MF, Man C, Lei W (2011) Morphological, physiological and biochemical responses of plants to drought stress. Afr J Agric Res 6(9):2026–2032

    Google Scholar 

  • A&N Technical Serives (2015) Water use efficiency master plan. A & N Technical Services, Inc.

  • Bahadur A, Singh K, Rai A, Verma A, Rai M (2009) Physiological and yield response of okra (Abelmoschus esculentus) to irrigation scheduling and organic mulching. Indian J Agric Sci 79(10):813–815

    Google Scholar 

  • Banik P, Zeng W, Tai H, Bizimungu B, Tanino K (2016) Effects of drought acclimation on drought stress resistance in potato (Solanum tuberosum L.) genotypes. Environ Exp Bot 126:76–89

    Article  Google Scholar 

  • Bationo-Kando P, Sawadogo B, Nanema K, Kiebre Z, Sawadogo N, Traore R, Zongo J (2015). Characterization of Solanum aethiopicum (Kumba group) in Bukina Faso. Int J Sci Nat 6(2):169–176

  • Blum A (2005) Drought resistance, water-use efficiency, and yield potential—are they compatible, dissonant, or mutually exclusive? Aust J Agric Res 56(11):1159. https://doi.org/10.1071/AR05069

    Article  Google Scholar 

  • Blum A (2009) Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crops Res 112(2–3):119–123. https://doi.org/10.1016/j.fcr.2009.03.009

    Article  Google Scholar 

  • de Oliveira EJ, de Freitas JPX, de Jesus ON (2014) AMMI analysis of the adaptability and yield stability of yellow passion fruit varieties. Scientia Agricola 71(2):139–145

    Article  Google Scholar 

  • Eberhart S, Russell W (1966) Stability parameters for comparing varieties. Iowa Agric Home Econ

  • Falconer D, Mackay TF (1996) Introduction to Quantitative Genetics, 4th edn. Longman, Malaysia

    Google Scholar 

  • Fang Y, Xiong L (2015) General mechanisms of drought response and their application in drought resistance improvement in plants. Cell Mol Life Sci 72(4):673–689. https://doi.org/10.1007/s00018-014-1767-0

    Article  CAS  PubMed  Google Scholar 

  • Gramazio P, Blanca J, Ziarsolo P, Herraiz FJ, Plazas M, Prohens J, Vilanova S (2016). Transcriptome analysis and molecular marker discovery in Solanum incanum and S. aethiopicum, two close relatives of the common eggplant (Solanum melongena) with interest for breeding. BMC Genom 17(1). https://doi.org/10.1186/s12864-016-2631-4

  • Gramazio P, Prohens J, Borràs D, Plazas M, Herraiz FJ, Vilanova S (2017) Comparison of transcriptome-derived simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers for genetic fingerprinting, diversity evaluation, and establishment of relationships in eggplants. Euphytica 213(12). https://doi.org/10.1007/s10681-017-2057-3

  • Kamidi RE (2001) Relative stability, performance, and superiority of crop genotypes across environments. J Agric Biol Environ Stat 6(4):449–460

    Article  Google Scholar 

  • Kesiime V (2014) Inheritance of tolerance to drought from selected potato (Solanum tuberosum) cultivars in Uganda (MSc). Makerere University, Kampala

    Google Scholar 

  • Kumar R, Solankey S, Singh M (2012) Breeding for drought tolerance in vegetables. Veg Sci 39(1):1–15

    Google Scholar 

  • Lin C, Binns M (1988) A superiority measure of cultivar performance for cultivar × location data. Can J Plant Sci 68:193–198

    Article  Google Scholar 

  • Mendes de Paula TO, Marinho CD, Souza V, Barbosa MHP, Peternelli LA, Kimbeng CA, Zhou MM (2014) Relationships between methods of variety adaptability and stability in sugarcane. Genet Mol Res 13(2):4216–4225. https://doi.org/10.4238/2014.June.9.7

    Article  CAS  PubMed  Google Scholar 

  • Mwale SE, Ssemakula MO, Sadik K, Alladassi B, Rubaihayo P, Gibson P, Edema R (2017) Estimates of combining ability and heritability in cowpea genotypes under drought stress and non-stress conditions in Uganda. J Plant Breed Crop Sci 9(2):10–18

    Article  Google Scholar 

  • Ogbu K, Ndulue E, Ogwo V, Mbajiorgu C (2016) Development and testing of a capacitative digital soil moisture metre. Niger J Technol 35(3):686–693. https://doi.org/10.4314/njt.v35i3.30

    Article  Google Scholar 

  • Ogunniyan DJ, Olakojo SA (2014) Genetic variation, heritability, genetic advance and agronomic character association of yellow elite inbred lines of maize (Zea mays L.). Niger J Genet 28(2):24–28. https://doi.org/10.1016/j.nigjg.2015.06.005

    Article  Google Scholar 

  • Osei MK, Banful B, Osei CK, Oluoch MO (2010) Characterization of African eggplant for morphological characteristics. Nong Ye Ke Xue Yu Ji Shu 4(3):33

    Google Scholar 

  • Plazas M, AndÃojar I, Vilanova S, Gramazio P, Herraiz FJ, Prohens J (2014) Conventional and phenomics characterization provides insight into the diversity and relationships of hypervariable scarlet (Solanum aethiopicum L.) and gboma (S. macrocarpon L.) eggplant complexes. Front Plant Sci 5. https://doi.org/10.3389/fpls.2014.00318

  • Prohens J, Whitaker BD, Plazas M, Vilanova S, Hurtado M, Blasco M, Gramazio P, Stommel JR (2013) Genetic diversity in morphological characters and phenolic acids content resulting from an interspecific cross between eggplant, Solanum melongena, and its wild ancestor (S. incanum): morphology and phenolics in an interspecific family in eggplant. Ann Appl Biol 162(2):242–257. https://doi.org/10.1111/aab.12017

  • Pucholt P, Sjödin P, Weih M, Rönnberg-Wästljung AC, Berlin S (2015) Genome-wide transcriptional and physiological responses to drought stress in leaves and roots of two willow genotypes. BMC Plant Biol 15(1). https://doi.org/10.1186/s12870-015-0630-2

  • Roychowdhury R, Randrianotahina J (2011) Evaluation of genetic parameters for agro-metrical characters in carnation genotypes. Afr Crop Sci J 19(3):183–188

    Google Scholar 

  • Sękara A, Cebula S, Kunicki E et al (2007) Cultivated eggplants—origin, breeding objectives and genetic resources, a review. Folia Hortic 19(1):97–114

    Google Scholar 

  • Singh M, Kumar J, Singh S, Singh V, Prasad S (2015) Roles of osmoprotectants in improving salinity and drought tolerance in plants: a review. Rev Environ Sci Bio/Technol 14(3):407–426. https://doi.org/10.1007/s11157-015-9372-8

  • Ssekabembe CK, Odong TL (2008) Division of labour in nakati (Solanum aethiopicum) production in central Uganda. Afr J Agric Res 3(6):400–406

    Google Scholar 

  • Sseremba G, Kabod N, Kasharu A, Jaggwe J, Masanza M, Kizito E (2017a) Diversity and distribution of African indigenous vegetable species in Uganda. Int J Biodivers Conserv 9(11):334–341. https://doi.org/10.5897/IJBC2017.1120

    Article  Google Scholar 

  • Sseremba G, Tongoona P, Eleblu JS, Danquah E, Kabod N, Kizito E (2017b) Morphological distinctiveness between Solanum aethiopicum Shum group and its progenitor. J Plant Breed Crop Sci 9(8):118–129. https://doi.org/10.5897/JPBCS2017.0663

    Google Scholar 

  • Turyagyenda L, Kizito E, Ferguson M, Baguma Y, Agaba M, Harvey JJ, Osiru DS (2013) Physiological and molecular characterization of drought responses and identification of candidate tolerance genes in cassava. AoB Plants 5(plt007):1–17. https://doi.org/10.1093/aobpla/plt007

    Google Scholar 

  • Yoshida T, Mogami J, Yamaguchi-Shinozaki K (2014) ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. Curr Opin Plant Biol 21:133–139. https://doi.org/10.1016/j.pbi.2014.07.009

    Article  CAS  PubMed  Google Scholar 

  • Zhu M, Chen G, Zhang J, Zhang Y, Xie Q, Zhao Z, Pan Y, Hu Z (2014). The abiotic stress-responsive NAC-type transcription factor SlNAC4 regulates salt and drought tolerance and stress-related genes in tomato (Solanum lycopersicum). Plant Cell Reports, 33, 1851–1863. https://doi.org/10.1007/s00299-014-1662-z

Download references

Acknowledgements

This study was supported by the Intra-ACP mobility project/Makerere University, and the German Academic Exchange Programme/West Africa Centre for Crop Improvement (DAAD/WACCI, Grant number 91585869). The germplasm and drought screening equipment support were provided by the Department of Agricultural and Biological Sciences, Uganda Christian University; through a project ‘Enhancing nutrition security and incomes through adding value to indigenous vegetables in East and Central Uganda’ (FARA/PAEPARD-CRFII).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Godfrey Sseremba, Pangirayi Tongoona or Elizabeth Balyejusa Kizito.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sseremba, G., Tongoona, P., Eleblu, J.S.Y. et al. Stability of Solanum aethiopicum Shum accessions under varied water deficit stress levels and identification of pertinent breeding traits for resistance to water shortage. Euphytica 214, 11 (2018). https://doi.org/10.1007/s10681-017-2097-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-017-2097-8

Keywords

Navigation