Advertisement

Euphytica

, 214:5 | Cite as

Genetic relationships between anther and stigma traits revealed by QTL analysis in two rice advanced-generation backcross populations

  • Saran Khumto
  • Tonapha Pusadee
  • Kenneth M. Olsen
  • Sansanee Jamjod
Article

Abstract

Anther and stigma size are critical floral traits that influence outcrossing in rice (Oryza sativa), a crop that is predominantly self-fertilizing. The efficiency of hybrid rice seed production depends on efficient outcrossing ability of parental lines, which is promoted by increased anther and stigma size. Phenotypic correlations between anther and stigma traits have been observed in many studies; however, evidence for this relationship is unclear and the genetic basis remains to be elucidated. To examine this relationship and to identify quantitative trait loci (QTLs) for increased anther and stigma size, we developed two advanced backcross QTL mapping populations derived from a cross between a Thai elite indica crop variety (SPR1) and an accession of common wild rice (O. rufipogon Griff.), which is predominantly outcrossing. One mapping population was selected for increased anther size while the other was selected for increased stigma size. We mapped QTLs for anther size and stigma size in both populations. Bulked segregant analysis was used to identify molecular markers associated with the selected traits. A total of 16 significant QTLs associated with anther and stigma traits were identified across the two populations, and these were located in five genomic regions on four chromosomes. Whereas three of these regions have been previously reported, two of them are newly identified and should be further explored for improving outcrossing ability in rice. The co-localization of QTL for anther and stigma traits strongly suggests some degree of shared developmental basis for these traits.

Keywords

Advanced-generation inbred lines Floral organ size Oryza sativa Oryza rufipogon Outcrossing Selection 

Notes

Acknowledgements

S. Khumto was supported by a Royal Golden Jubilee PhD Scholarship. This work was supported by the Thailand Research Fund, and partially supported by the National Research University Program of Thailand’s commission on Higher Education. We thank the members of the CMUPNlab, Chiang Mai University and the Olsen laboratory, Washington University in St. Louis for field work and advice through this study.

Supplementary material

10681_2017_2091_MOESM1_ESM.pdf (124 kb)
Supplementary material 1 (PDF 124 kb)
10681_2017_2091_MOESM2_ESM.pdf (78 kb)
Supplementary material 2 (PDF 77 kb)

References

  1. Anuradha K, Agarwal S, Rao YV, Rao KV, Viraktamath BC, Sarla N (2012) Mapping QTLs and candidate genes for iron and zinc concentrations in unpolished rice of Madhukar × Swarna RILs. Gene 508:233–240.  https://doi.org/10.1016/j.gene.2012.07.054 CrossRefPubMedGoogle Scholar
  2. Brauer MJ, Christianson CM, Pai DA, Dunham MJ (2006) Mapping novel traits by array-assisted bulk segregant analysis in Saccharomyces cerevisiae. Genetics 173:1813–1816.  https://doi.org/10.1534/genetics.106.057927 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Broman KW, Wu H, Sen Ś, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890.  https://doi.org/10.1093/bioinformatics/btg112 CrossRefPubMedGoogle Scholar
  4. Cai HW, Morishima H (2002) QTL clusters reflect character associations in wild and cultivated rice. Theor Appl Genet 104:1217–1228CrossRefPubMedGoogle Scholar
  5. Chen Y, Lübberstedt T (2010) Molecular basis of trait correlations. Trends Plant Sci 15:454–461.  https://doi.org/10.1016/j.tplants.2010.05.004 CrossRefPubMedGoogle Scholar
  6. Cheng SH, Zhuang JY, Fan YY, Du JH, Cao LY (2007) Progress in research and development on hybrid rice: a super-domesticate in China. Ann Bot 100:959–966.  https://doi.org/10.1093/aob/mcm121 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Conner JK (2002) Genetic mechanisms of floral trait correlations in a natural population. Nature 420:407–410.  https://doi.org/10.1038/nature01105 CrossRefPubMedGoogle Scholar
  8. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Focus 12:13–15Google Scholar
  9. El-Namaky RA, Demont M (2013) Hybrid rice in Africa: challenges and prospects. In: Wopereis MCS (ed) Realizing Africa’s rice promise. CAB Inthernational, Wallingford, pp 173–178CrossRefGoogle Scholar
  10. Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112:1164–1171.  https://doi.org/10.1007/s00122-006-0218-1 CrossRefPubMedGoogle Scholar
  11. Gu XY, Foley ME, Horvath DP, Anderson JV, Feng J, Zhang L, Mowry CR, Ye H, Suttle JC, Kadowaki K, Chen Z (2011) Association between seed dormancy and pericarp color is controlled by a pleiotropic gene that regulates abscisic acid and flavonoid synthesis in weedy red rice. Genetics 189:1515–1524.  https://doi.org/10.1534/genetics.111.131169 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Haley C, Knott S (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69:315–324CrossRefPubMedGoogle Scholar
  13. Hossain H, Rahman MA, Alam MS, Singh RK (2015) Mapping of quantitative trait loci associated with reproductive-stage salt tolerance in rice. J Agron Crop Sci 201:17–31.  https://doi.org/10.1111/jac.12086 CrossRefGoogle Scholar
  14. Ikeda K, Sunohara H, Nagato Y (2004) Developmental course of inflorescence and spikelet in rice. Breed Sci 54:147–156.  https://doi.org/10.1270/jsbbs.54.147 CrossRefGoogle Scholar
  15. Ishida H, Sasahara T (1989) Correlations between floral characters and the days to heading in rice (Oryza sativa L.). Jpn J Breed 39:275–283.  https://doi.org/10.1270/jsbbs1951.39.275 CrossRefGoogle Scholar
  16. Itoh JI, Nonomura KI, Ikeda K, Yamaki S, Inukai Y, Yamagishi H, Kitano H, Nagato Y (2005) Rice plant development: from zygote to spikelet. Plant Cell Physiol 46:23–47.  https://doi.org/10.1093/pcp/pci501 CrossRefPubMedGoogle Scholar
  17. Kosambi DD (1943) The estimation of map distances from recombination values. Ann Eugen 12:172–175.  https://doi.org/10.1111/j.1469-1809.1943.tb02321.x CrossRefGoogle Scholar
  18. Li WH, Dong GJ, Hu XM, Teng S, Guo LB, Zheng DL, Qian Q (2003) QTL analysis for percentage of exserted stigma in rice (Oryza sativa L.). Yi Chuan Xue Bao 30:637–640PubMedGoogle Scholar
  19. Li P, Feng F, Zhang Q, Chao Y, Gao G, He Y (2014) Genetic mapping and validation of quantitative trait loci for stigma exsertion rate in rice. Mol Breed 34:2131–2138.  https://doi.org/10.1007/s11032-014-0168-2 CrossRefGoogle Scholar
  20. Marathi B, Jena KK (2014) Floral traits to enhance outcrossing for higher hybrid seed production in rice: present status and future prospects. Euphytica 201:1–14.  https://doi.org/10.1007/s10681-014-1251-9 CrossRefGoogle Scholar
  21. McCouch SR, Teytelman L, Xu Y, Lobos KB, Clare K, Walton M, Fu B, Maghirang R, Li Z, Xing Y, Zhang Q, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, Stein L (2002) Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res 9:199–207.  https://doi.org/10.1093/dnares/9.6.199 CrossRefPubMedGoogle Scholar
  22. Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci 88:9828–9832.  https://doi.org/10.1073/pnas.88.21.9828 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Miyata M, Yamamoto T, Komori T, Nitta N (2007) Marker-assisted selection and evaluation of the QTL for stigma exsertion under japonica rice genetic background. Theor Appl Genet 114:539–548.  https://doi.org/10.1007/s00122-006-0454-4 CrossRefPubMedGoogle Scholar
  24. Parmar KS, Siddiq EA, Swaminathan MS (1979) Variation in anther and stigma characteristics in rice. Indian J Genet 39:551–559Google Scholar
  25. Qi X, Liu Y, Vigueira CC, Young ND, Caicedo AL, Jia Y, Gealy DR, Olsen KM (2015) More than one way to evolve a weed: parallel evolution of US weedy rice through independent genetic mechanisms. Mol Ecol 24:3329–3344.  https://doi.org/10.1111/mec.13256 CrossRefPubMedGoogle Scholar
  26. Singh R, Singh B, Sahoo SK, Srivastava RP (2014) Genetic analysis of cyto-sterile lines in rice (Oryza sativa L.). Int J Sci Res 3:293–296Google Scholar
  27. Spielman DJ, Kolady DE, Ward PS (2013) The prospects for hybrid rice in India. Food Secur 5:651–665.  https://doi.org/10.1007/s12571-013-0291-7 CrossRefGoogle Scholar
  28. Takano-Kai N, Jiang H, Kubo T, Sweeney M, Matsumoto T, Kanamori H, Padhukasahasram B, Bustamante C, Yoshimura A, Doi K, McCouch S (2009) Evolutionary history of GS3, a gene conferring grain length in rice. Genetics 182:1323–1334.  https://doi.org/10.1534/genetics.109.103002 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Takano-Kai N, Doi K, Yoshimura A (2011) GS3 participates in stigma exsertion as well as seed length in rice. Breed Sci 61:244–250.  https://doi.org/10.1270/jsbbs.61.244 CrossRefGoogle Scholar
  30. Tazib T, Kobayashi Y, Koyama H, Matsui T (2014) QTL analyses for anther length and dehiscence at flowering as traits for the tolerance of extreme temperatures in rice (Oryza sativa L.). Euphytica 203:629–642.  https://doi.org/10.1007/s10681-014-1291-1 CrossRefGoogle Scholar
  31. Temnykh S, Park WD, Ayres N, Cartinhour S, Hauck N, Lipovich L, Cho YG, Ishii T, McCouch SR (2000) Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theor Appl Genet 100:697–712.  https://doi.org/10.1007/s001220051342 CrossRefGoogle Scholar
  32. Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S (2001) Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res 11:1441–1452.  https://doi.org/10.1101/gr.184001 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Tiwari S, Sl K, Kumar V, Singh B, Rao AR, Amitha M, Rai V, Singh AK, Singh NK (2016) Mapping QTLs for salt tolerance in rice (Oryza sativa L.) by bulked segregant analysis of recombinant inbred lines using 50 K SNP chip. PLoS ONE 11:e0153610.  https://doi.org/10.1371/journal.pone.0153610 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Uga Y, Fukuta Y, Cai HW, Iwata I, Ohsawa R (2003) Mapping QTLs influencing rice floral mophology using recombinant inbred lines derived from a cross between Oryza sativa L. and Oryza rufipogon Griff. Theor Appl Genet 107:218–226CrossRefPubMedGoogle Scholar
  35. Uga Y, Siangliw M, Nagamine T, Ohsawa R, Fujimura T, Fukuta Y (2010) Comparative mapping of QTLs determining glume, pistil and stamen size in cultivated rice (Oryza sativa L). Plant Breed 129:657–669CrossRefGoogle Scholar
  36. Venuprasad R, Dalid CO, Valle MD, Zhao D, Espirtu M, Cruz MT, Amante M, Kumar A, Atlin GN (2009) Identification and characterization of large-effect quantitative trait loci for grain yield under lowland drought stress in rice using bulk segregant analysis. Theor Appl Genet 120:177–190.  https://doi.org/10.1007/s00122-009-1168-1 CrossRefPubMedGoogle Scholar
  37. Vikram P, Swamy BPM, Dixit S, Ahmed H, Cruz MT, Singh AK, Ye G, Kumar A (2012) Bulk segregant analysis: “an effective approach for mapping consistent-effect drought grain yield QTLs in rice”. Field Crops Res 134:185–192.  https://doi.org/10.1016/j.fcr.2012.05.012 CrossRefGoogle Scholar
  38. Vikram P, Swamy BPM, Dixit S, Singh R, Singh BP, Miro B, Kohli A, Henrry A, Singh NK, Kumar A (2015) Drought susceptibility of modern rice varieties: an effect of linkage of drought tolerance with undesirable traits. Sci Rep 5:14799.  https://doi.org/10.1038/srep14799 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Virmani SS (1994) Floral traits influencing outcrossing in rice. In: Heterosis and hybrid rice breeding. Springer, Berlin, pp 88–91Google Scholar
  40. Virmani SS, Athwal DS (1973) Genetic variability in floral characteristics influencing outcrossing in Oryza sativa L. Crop Sci 13:66.  https://doi.org/10.2135/cropsci1973.0011183X001300010019x CrossRefGoogle Scholar
  41. Virmani SS, Athwal DS (1974) Inheritance of floral characteristics influencing outcrossing in rice. Crop Sci 14:350.  https://doi.org/10.2135/cropsci1974.0011183X001400030002x CrossRefGoogle Scholar
  42. Virmani SS, Kumar I (2004) Development and use of hybrid rice technology to increase rice productivity in the tropics. Int Rice Res Notes 29:10–20Google Scholar
  43. Xiong LZ, Liu KD, Dai XK, Xu CG, Zhang Q (1999) Identification of genetic factors controlling domestication-related traits of rice using an F2 population of a cross between Oryza sativa and O. rufipogon. Theor Appl Genet 98:243–251.  https://doi.org/10.1007/s001220051064 CrossRefGoogle Scholar
  44. Yamamoto T, Takemori N, Sue N, Nitta N (2003) QTL analysis of stigma exsertion in rice. Rice Genet Newsl 20:33–34Google Scholar
  45. Yan WG, Li Y, Agrama HA, Luo D, Gao F, Lu X, Ren G (2009) Association mapping of stigma and spikelet characteristics in rice (Oryza sativa L.). Mol Breed 24:277–292.  https://doi.org/10.1007/s11032-009-9290-y CrossRefPubMedPubMedCentralGoogle Scholar
  46. Yoshida H, Nagato Y (2011) Flower development in rice. J Exp Bot 62:4719–4730.  https://doi.org/10.1093/jxb/err272 CrossRefPubMedGoogle Scholar
  47. Zhang G, Chen L, Xiao G, Xiao Y, Chen X, Zhang S (2009) Bulked segregant analysis to detect QTL related to heat tolerance in rice (Oryza sativa L.) using SSR markers. Agric Sci China 8:482–487.  https://doi.org/10.1016/S1671-2927(08)60235-7 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  • Saran Khumto
    • 1
  • Tonapha Pusadee
    • 1
  • Kenneth M. Olsen
    • 3
  • Sansanee Jamjod
    • 1
    • 2
  1. 1.Department of Plant Science and Soil Science, Faculty of AgricultureChiang Mai UniversityChiang MaiThailand
  2. 2.Lanna Rice Research CenterChiang Mai UniversityChiang MaiThailand
  3. 3.Department of BiologyWashington UniversitySt. LouisUSA

Personalised recommendations