, 214:1 | Cite as

Review on resistance to wheat blast disease (Magnaporthe oryzae Triticum) from the breeder point-of-view: use of the experience on resistance to rice blast disease

  • M. Vales
  • T. Anzoátegui
  • B. Huallpa
  • M. I. Cazon


This review on the resistance to wheat blast disease focus on the latest knowledge useful for the breeders, but also takes into account the lacks in these knowledge. To tackle this disease, it is relevant to apply a breeding strategy which has previously proven its efficacy for obtaining rice varieties with a high level of partial and durable resistance to blast. But, incomplete information is available on wheat blast resistance. Therefore, firstly, it is necessary to adjust this breeding strategy considering the worst hypothesis corresponding to every lack of knowledge. Next, the possible invalidation of every hypothesis can allow simplifying the breeding schema and its implementation. For every lack of knowledge, the practical consequences of the corresponding worst hypothesis, the study of its validity and the consequences of its possible invalidation are explained. Scientific arguments, materials and methods details are provided with the latest available references.


Wheat blast disease Resistance Recurrent selection Participatory breeding Rice blast disease model 



We would like to show our gratitude to Dr. Jerôme Enjalbert (DEAP team, GQE unit, INRA Le Moulon, France), Dr. François Balfourier (CRB team, GDEC unit, INRA Clermont Ferrand, France), and Dr. Daryl L. Klindworth (Northern Crop Sc. Lab., State University Station, NDSU, Fargo, ND, USA) for sharing very relevant wheat genetic resources needed for our proposed and initiated experiments mentioned in this review. These experiments comply with current Bolivian laws and regulations.


  1. Aman A (2016) ‘Wheat blast’ threatens yield—farmers in 6 districts complain of infection. Dailystar March 01 Accessed 6 Jun 2017
  2. Anapo (2017) Trigo nacional prevé cubrir el 60% de la demanda interna Accessed 6 Jun 2017
  3. Balfourier F, Roussel V, Strelchenko P, Exbrayat-Vinson F, Sourdille P, Boutet G, Koenig J, Ravel C, Mitrofanova O, Beckert M, Charmet G (2007) A worldwide bread wheat core collection arrayed in a 384-well plate. Theor Appl Genet 114(7):1265–1275CrossRefPubMedGoogle Scholar
  4. Ballini E, Morel JB, Droc G, Price A, Courtois B, Notteghem JL, Tharreau D (2008) Genome-wide meta-analysis of rice blast resistance genes and quantitative trait loci provides new insights into partial and complete resistance. Mol Plant-Microbe Interact 21(7):859–868CrossRefPubMedGoogle Scholar
  5. Barea G, Toledo J (1996) Identificación y zonificación de Pyricularia o brusone (Pyricularia oryzae) en el cutivo de trigo en el departamento de Santa Cruz. Santa Cruz de la Sierra, Bolivia, pp 76–86Google Scholar
  6. BARI (2016) Detection and confirmation of “wheat blast disease” by BARI scientists in Bangladesh. Report, April, 2016, p 6 Accessed 6 Jun 2017
  7. Barlow KK, Driscoll CJ (1981) Linkage studies involving two chromosomal male sterility mutants in hexaploid wheat. Genetics 98:791–799PubMedPubMedCentralGoogle Scholar
  8. Bhattacharya R, Pal S (2017) Deadly wheat blast symptoms enters India through the Bangladesh border, Bengal govt burning crops on war footing. Hindustan Times, Kolkata, Updated: Mar 05, 2017 13:52 IST Accessed 6 Jun 2017
  9. Bonjean A (2001) Histoire de la culture des céréales et en particulier de celle du blé tendre (Triticum aestivum L.). In : Agriculture et biodiversité des plantes. Dossiers de l’Environnement de l’INRA (ed) no. 21, vol. 170. Paris, pp 29–37 Accessed 6 Jun 2017
  10. Bouet A, Vales M (2001) Importance of the rice (Oryza sp.) flowering date on the neck blast disease development (in French). Agron Afr 13(2):15–20Google Scholar
  11. Bouet A, Vales M, Keli ZJ (2006) Evaluation of the rice (Oryza sp.) field resistance to neck blast disease (in French). Agron Afr 18(2):85–185Google Scholar
  12. Brown J (2002) Yield penalties of disease resistance in crops. Curr Opin Plant Biol 5(4):339–344CrossRefPubMedGoogle Scholar
  13. Browne RA (2007) Components of resistance to fusarium head blight (FHB) in wheat detected in a seed-germination assay with Microdochium majus and the relationship to FHB disease development and mycotoxin accumulation from Fusarium graminearum infection. Plant Pathol 56:65–72CrossRefGoogle Scholar
  14. CABI (2016) Magnaporthe oryzae Triticum pathotype (wheat blast). Invasive species compendium. Accessed 6 Jun 2017
  15. Cabrera MG, Gutiérrez S (2007) Primer registro de Pyricularia grisea en cultivos de trigo del NE de Argentina. In: Jornada de Actualización en Enfermedades de Trigo. IFSC Press, Lavallol (ed), Buenos Aires, p 60Google Scholar
  16. Chao-Chien J, Qualset CO (1977) Genetic male sterility in wheat (Triticum aestivum L.): reproductive characteristics and possible use in hybrid wheat breeding. Hilgardia 45(6):153–1714CrossRefGoogle Scholar
  17. Chauhan H, Boni R, Bucher R, Kuhn B, Buchmann G, Sucher J, Selter LL, Hensel G, Kumlehn J, Bigler L, Glauser G, Wicker T, Krattinger SG, Keller B (2015) The wheat resistance gene Lr34 results in the constitutive induction of multiple defense pathways in transgenic barley. Plant J 84:202–215CrossRefPubMedGoogle Scholar
  18. Chávez A, Kohli M (2015) Alternative hosts of Magnaporthe grisea of wheat in Paraguay (in Spanish). Investig Agrar 17(1):54–59CrossRefGoogle Scholar
  19. Chen HQ, Chen ZX, Ni S, Zuo SM, Pan XB, Zhu XD (2008) Pyramiding three genes with resistance to blast by marker assisted selection to improve rice blast resistance of Jin 23B. Chin J Rice Sci 22(1):23–27Google Scholar
  20. Comstock CA, Martinson CA, Gengenbach BG (1973) Host specificity of a toxin from Phyllosticta maydis for Texas cytoplasmically male-sterile maize. Phytopathology 63:1357–1361CrossRefGoogle Scholar
  21. Cruz CD, Kiyuna J, Bockus WW, Todd TC, Stack JP, Valent B (2015) Magnaporthe oryzae conidia on basal wheat leaves as a potential source of wheat blast inoculum. Plant Pathol 64:1491–1514CrossRefGoogle Scholar
  22. Cruz CD, Bockus WW, Stack JP, Valent B (2016a) A standardized inoculation protocol to test wheat cultivars for reaction to head blast caused by Magnaporthe oryzae (Triticum pathotype). Plant Health Prog 17:186–187Google Scholar
  23. Cruz CD, Peterson GL, Bockus WW, Kankanala P, Dubcovsky J, Jordan KW, Akhunov E, Chumley F, Baldelomar FD, Valent B (2016b) The 2NS translocation from Aegilops ventricosa confers resistance to the Triticum Pathotype of Magnaporthe oryzae. Crop Sci 56(3):990–1000CrossRefPubMedPubMedCentralGoogle Scholar
  24. d’Alpoim Guedes J, Lu H, Li Y, Spengler RN, Wu X, Aldenderfer MS (2014) Moving agriculture onto the Tibetan plateau: the archaeobotanical evidence. Archaeol Anthropol Sci 6:255. CrossRefGoogle Scholar
  25. de Coelho MA, Torres M, Cecon PR, Santana FM (2016) Sowing date reduces the incidence of wheat blast disease. Pesq Agropec Bras 1(5):631–637CrossRefGoogle Scholar
  26. de Groot S (2012) Initiation of a pre-breeding programme for enhancing genetic resistance against wheat rust. Thesis presented in fulfilment of the requirements for the degree of Master of Science in the Faculty of AgriSciences at Stellenbosch University, p 160 Accessed 6 Jun 2017
  27. de Groot S, Botes WC (2010) Employing marker assisted recurrent mass selection in a pre-breeding strategy for accumulating disease resistance genes. In: 8th SAPBA Symposium 2010, Spier, Stellenbosch, 15–17 March 2010, P7: p 68 Accessed 6 Jun 2017
  28. Delgado D y Vales M (1998) Escape a cepas virulentas de Pyricularia oryzae en selección genealógica en arroz (Oryza sativa) y consecuencias prácticas. In: VI Congreso de la Sociedad Colombiana de Fitomejoramiento y Producción de cultivos. Biodiversidad. 14–15 de Julio, Villavicencio, Meta, ColombiaGoogle Scholar
  29. Denancé N, Sánchez-Vallet A, Goffner D, Molina A (2013) Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs. Front Plant Sci 4:12CrossRefGoogle Scholar
  30. Deng Y, Zhai K, Xie Z, Yang D, Zhu X, Liu J, Wang X, Qin P, Yang Y, Zhang G, Li Q, Zhang J, Wu S, Milazzo J, Mao B, Wang E, Xie H, Tharreau D, He Z (2017) Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance. Science 355:962–965CrossRefPubMedGoogle Scholar
  31. Diekmann M, Putter CAJ (1995) Wheat blast. In: Small grain temperate cereals. International Center for Agricultural Research in the Dry Areas. Collection: FAO/IPGRI technical guidelines for the safe movement of germplasm, no. 14. FAO/IPGRI Edition, Rome, pp 51–52 Accessed 6 Jun 2017
  32. Dodson JR, Lib X, Zhou X, Zhao K, Sun N, Atahan P (2013) Origin and spread of wheat in China. Quat Sci Rev 72:108–111CrossRefGoogle Scholar
  33. Dotlačil L, Stehno Z, Faberová I, Hermuth J (2011) Utilization of Czech collection of wheat genetic resources in breeding. Crop Research Institute Praha, Czech Republic. EUCARPIA, European Plant Genetic Resources Conference. Wageningen, The Netherlands April 5–7, p 24 Accessed 6 Jun 2017
  34. Driscoll CJ (1975) Cytogenetic Analysis of two chromosomal male-sterility mutants in Hexaploid Wheat. Aust J Biol Sci 28:413–416CrossRefGoogle Scholar
  35. Dubina EV, Mukhina ZHM, Kharitonov EM, Shilovskiy VN, Kharchenko ES, Esaulova LV, Korkina NN, Maximenko EP, Nikitina IB (2015) Creation of blast disease-resistant rice sorts with modern DNA-markers (in Russian). Genetika 51(8):881–886PubMedGoogle Scholar
  36. Enjalbert J, Goldringer I, David J, Brabant P (1998) The relevance of outcrossing for the dynamic management of genetic resources in predominantly selfing Triticum aestivum L. (bread wheat). Genet Sel Evol 30(Suppl. 1):S197–S211CrossRefGoogle Scholar
  37. Enjalbert J, Dawson JC, Paillard S, Rhone B, Rousselle Y, Thomas M, Goldringer I (2011) Dynamic management of crop diversity: from an experimental approach to on-farm conservation. C R Biol 334(5–6):458–468CrossRefPubMedGoogle Scholar
  38. Feistritzer WP, Bradley R, Ogada F (1975) Chapter 3. Seed production and harvesting, 25–59. In: Feistritzer WP (ed) Cereal seed technology—a manual of cereal seed production, quality control, and distribution. FAO, Rome, first published 1975 and reprinted 1977, p 266 Accessed 6 Jun 2017
  39. Fossati A, Ingold M (1970) A male sterile mutant in Triticum aestivum. Wheat Inf Serv 30:1–8Google Scholar
  40. Galbieri R, Urashima AS (2008) Caracterização, compatibilidade e ocorrência de reprodução sexual entre isolados de Pyricularia grisea de diferentes hospedeiros. Summa Phytopathol Botucatu 34(1):22–28CrossRefGoogle Scholar
  41. Gallais A (1990) Théorie de la selection en amélioration des plantes. Masson (ed), Paris, p 588Google Scholar
  42. Gastel (van) AJG, Zewdie Bishaw, Gregg BR (2002) Wheat seed production. In: Curtis BC, Rajaram S, Gómez Macpherson H Bread wheat. FAO plant production and protection series no. 30 improvement and production. Accessed 6 Jun 2017
  43. GNIS (2008) Règlements techniques de la production, du contrôle et de la certification des semences—Tome 1: semences de grandes cultures certifiées commerciales mélanges. Editeur Paris, GNIS, 2003, p 232 Accessed 6 Jun 2017
  44. Gomes PD, Rocha VS, Pereira LO, Souza MA (2017) Damage of wheat blast on the productivity and quality of seeds as a function of the initial inoculum in the field. J Seed Sci 39(1):66–74CrossRefGoogle Scholar
  45. Guzmán R, Vedia A, Baek EH, Vales M (2017) Advances in participatory rice genetic improvement to face the climate change challenges in Bolivia (in Spanish). J Bol Inv Agric 1(1) [a new Journal] (in press)Google Scholar
  46. Hallauer AR (1985) Compendium of recurrent selection methods and their application. CRC Crit Rev Plant Sci 3(1):1–33CrossRefGoogle Scholar
  47. Hao C, Wang L, Ge H, Dong Y, Zhang X (2011) Genetic diversity and linkage disequilibrium in chinese bread wheat (Triticum aestivum L.) Revealed by SSR Markers. PLoS ONE 6(2):13Google Scholar
  48. Igarashi S, Utiamada CM, Igarashi LC, Kazuma AH, Lopes RS (1986) Pyricularia em trigo. 1. Ocorrência de Pyricularia sp. No estado do Paraná. Fitopatol Bras 11:351–352Google Scholar
  49. Islam MT, Croll D, Gladieux P, Soanes DM, Persoons A, Bhattacharjee P, Hossain MS, Gupta DR, Rahman MM, Mahboob MG, Cook N, Salam MU, Surovy MZ, Sancho VB, Maciel JL, Nhani Júnior A, Castroagudín VL, Reges JT, Ceresini PC, Ravel S, Kellner R, Fournier E, Tharreau D, Lebrun MH, Mc Donald BA, Stitt T, Swan D, Talbot NJ, Saunders DG, Win J, Kamoun S (2016) Emergence of wheat blast in Bangladesh was caused by a South American lineage of Magnaporthe oryzae. BMC Biol 14(1):84CrossRefPubMedPubMedCentralGoogle Scholar
  50. Jarosch B, Kogel K-H, Schaffrath U (1999) The Ambivalence of the barley Mlo locus: mutations conferring resistance against powdery mildew (Blumeria graminis f. sp. hordei) Enhance susceptibility to the rice blast fungus Magnaporthe grisea. MPMI 12(6):508–514CrossRefGoogle Scholar
  51. Jiang J, Friebe B, Dhaliwal HS, Martin TJ, Gill BS (1993) Molecular cytogenetic analysis of Agropyron elongatum chromatin in wheat germplasm specifying resistance to wheat streak mosaic virus. Theor Appl Genet 86(1):41CrossRefPubMedGoogle Scholar
  52. Kervella J, Goldringer I, Brabant P (1991) Recurrent selection for the breeding of autogamous species with pure line varieties: a critical review (in French). Agronomie 11(5):335–352CrossRefGoogle Scholar
  53. Klindworth DL, Norman DW, Shivcharan SM (2002) Chromosomal location of genetic male sterility genes in four mutants of hexaploid wheat. Crop Sci 42(5):1447–1450CrossRefGoogle Scholar
  54. Kohli MM, Mehta YR, Guzman E, De Viedma L, Cubilla LE (2011) Pyricularia blast—a threat to wheat cultivation. Czech J Genet Plant 47:S130–S134CrossRefGoogle Scholar
  55. Krattinger SG, Sucher J, Selter LL, Chauhan H, Zhou B, Tang M, Upadhyaya NM, Mieulet D, Guiderdoni E, Weidenbach D, Schaffrath U, Lagudah ES, Keller B (2015) The wheat durable, multipathogen resistance gene Lr34 confers partial blast resistance in rice. Plant Biotechnol J 14:1261–1268CrossRefPubMedGoogle Scholar
  56. Lantican MA, Payne TS, Sonder K, Singh R, Van Ginkel M, Baum M, Braun HJ, Erenstein O (2015) Impacts of international wheat improvement research in the World, 1994–2014. Mexico, D.F. CIMMYT, p 4 Accessed 6 Jun 2017
  57. Levings CS 3rd (1990) The texas cytoplasm of maize: cytoplasmic male sterility and disease susceptibility. Science 250(4983):942–947CrossRefPubMedGoogle Scholar
  58. Maan SS, Carlson KM, Williams ND, Yang T (1987) Chromosomal arm location and gene-centromere distance of a dominant gene for male sterility in Wheat. Crop Sci 27:494–500CrossRefGoogle Scholar
  59. Maciel JLN, Ceresini PC, Castroagudin VL, Zala M, Kema GHJ, McDonald BA (2014) Population structure and pathotype diversity of the wheat blast pathogen Magnaporthe oryzae 25 years after its emergence in Brazil. Phytopathology 104(1):95–107CrossRefPubMedGoogle Scholar
  60. Malik SA, Khan MA (1943) Parasitic fungi of the North-West frontier province. Indian Agric Sci 13:522–527Google Scholar
  61. Marais GF, Botes WC, Louw JH (2001) Wheat breeding based on recurrent mass selection. Cereal Res Commun 29(3/4):339–342Google Scholar
  62. McRae W (1922) Report of the imperial mycologist. In: Pusa agricultural research institute scientific report 1921–1922, pp 44–50 (Rev Appl Mycol 2:258–260)Google Scholar
  63. Morand S (2013) Une collection internationale de Magnaporthe oryzae pour améliorer la lutte contre la pyriculariosse. In: “les dossiers d’Agropolis International” (n° 17—octobre 2013—75 pages) ”Collections taxonomiques, collections vivantes et ressources génétiques pour la biodiversité”, p 27 Accessed 6 Jun 2017
  64. (2015) Campaña de trigo 2015 fue afectada por la enfermedad piricularia., Martes, 03 Noviembre 2015. Accessed 6 Jun 2017
  65. Notteghem J-L (1989) La création de variétés résistantes: cas du riz et de la pyriculariose. Bulletin de la Société Botanique de France. Actualités Botaniques 136(3–4):227–237CrossRefGoogle Scholar
  66. Pagani APS, Dianese AC, Café-Filho AC (2014) Management of wheat blast with synthetic fungicides, partial resistance and silicate and phosphite minerals. Phytoparasitica 42:609–617CrossRefGoogle Scholar
  67. Parisod C, Definod C, Sarr A, Arrigo N, Felber F (2012) Genome-specific introgression between wheat and its wild relative Aegilops triuncialis. J Evol Biol 26:223–228CrossRefPubMedGoogle Scholar
  68. Perelló A, Martinez I, Molina M (2015) First report of virulence and effects of Magnaporthe oryzae isolates causing wheat blast in Argentina. Plant Dis 99(8):1177CrossRefGoogle Scholar
  69. Pereyra S, Stewart S, Germán S (2013) Report on Magnaporthe sp. in Uruguay. INIA La Estanzuela, April 8th, 2013, p 1Google Scholar
  70. Pratt K (2012) UK researchers find important new disease. UKAgNews, April 24, 2012. Accessed 6 Jun 2017
  71. Rasul I, Khan AS, Ali Z (2002) Estimation of heterosis for yield and some yield components in bread Wheat. Int J Agric Biol 4(2):214–216Google Scholar
  72. Romero Giraldo LE (2012) Introgression of QTLs for resistance to Hoja Blanca Virus into rice elite materials in Colombia (in Spanish). Tesis de Doctorado. Universidad Nacional de Colombia Facultad de Ciencias Agropecuarias Coordinación General de Postgrados, Palmira, Colombia, p 124Google Scholar
  73. Rutkoski JE, Heffner EL, Sorrells ME (2011) Genomic selection for durable stem rust resistance in wheat. Euphytica 179(1):161–173CrossRefGoogle Scholar
  74. Salines J (2012) El cruzamiento en el mejoramiento genético de trigo. INTA Marcos Juárez: 14 min 31 s Accessed 6 Jun 2017
  75. Sarkarung S (1991) A simplified crossing method for rice breeding. A manual. CIAT, p 32 Accessed 6 Jun 2017
  76. Sharma R (2017) Wheat blast research: status and imperatives. Afr J Agric Res 12(6):377–381CrossRefGoogle Scholar
  77. Spielmeyer W, Mago R, Wellings C, Ayliffe M (2013) Lr67 and Lr34 rust resistance genes have much incommon—they confer broad spectrum resistance to multiple pathogens in wheat. BMC Plant Biol 13(96):9Google Scholar
  78. Springfield L (2014) Pyramiding of rust resistance genes in wheat utilizing male sterility mediated marker-assisted recurrent selection. Thesis (MSc). Stellenbosch University, p 130 Accessed 6 Jun 2017
  79. Stevens CJ, Murphy C, Roberts R, Lucas L, Silva F, Fuller DQ (2016) Between China and South Asia: a Middle Asian corridor of crop dispersal and agricultural innovation in the Bronze Age. Holocene 26(10):1541–1555CrossRefPubMedPubMedCentralGoogle Scholar
  80. Taba S, van Ginkel M, Hoisington D, Poland D (2004) Wellhausen-anderson plant genetic resources center: operations manual. El Batan, Mexico, CIMMYT, p 29 Accessed 6 Jun 2017
  81. Taillebois J (1989) CNA-IRAT 5 upland rice popula-tion. Rice Res Newsl 14(3):8Google Scholar
  82. Taillebois J, Castro E da M de (1986) A new crossing technique. Int Rice Res Newsl 11(6):6
  83. Thépot S, Restoux G, Goldringer I, Hospital F, Gouache D, Mackay I, Enjalbert J (2015) Efficiently tracking selection in a multiparental population: the case of earliness in wheat. Genetics 199(2):609–623CrossRefPubMedGoogle Scholar
  84. Thomas KM (1940) Detailed administration Report of the Government Mycologist, Madras, for the year 1939–40, p 18 Accessed 6 Jun 2017 Accessed 6 Jun 2017
  85. Trottet M (1988) Use of genic male sterility for breeding wheat lines resistant to Leptosphaeria nodorum Muller: results of a first cycle and prospect. In: Proceedings of the seventh international wheat genetics symposium, Cambridge, UK, pp 1199–1202 Accessed 6 Jun 2017
  86. Urashima AS, Leite SF, Galbieri R (2007) Eficiência da disseminação aérea em Pyricularia grisea. Summa Phytopathol 33(3):275–279CrossRefGoogle Scholar
  87. Urashima AS, Grosso CRF, Stabili A, Freitas EG, Silva CP, Netto DCS, Franco I, Bottan JHM (2009) Effect of Magnaporthe grisea on seed germination, yield and quality of wheat. In: Wang GL, Valent B (eds) Advances in genetics, genomics and control of rice blast disease. Springer, Dordrecht, The Netherlands, pp 267–277 Accessed 6 Jun 2017
  88. Usatov AV, Kostylev PI, Azarin KV, Markin NV, Makarenko MS, Khachumov VA, Bibov MY (2016) Introgression of the rice blast resistance genes Pi1, Pi2 and Pi33 into Russian rice varieties by marker-assisted selection. Indian J Genet Plant Breed 76(1):18–23CrossRefGoogle Scholar
  89. Valent B (2016a) Novel strategies for managing blast diseases on rice and wheat. Progress report 01/01/15 to 12/31/15 Accessed 6 Jun 2017
  90. Valent B (2016b) Safeguarding U.S. wheat: Kansas State University researchers staying ahead of wheat blast disease. News and Communications Services. Kansas State University. Accessed 6 Jun 2017
  91. Vales M (1983) Des connaissances sur les relations hôte-parasite aux stratégies de lutte contre la pyriculariose du riz. Thèse en Amélioration et Développement des Végétaux. Université PARIS SUD, Centre d’Orsay. 2 mai 1983, p 310 Accessed 6 Jun 2017, Accessed 6 Jun 2017
  92. Vales M (1987a) La résistance durable : cas de la pyriculariose du riz. I—Les qualités associées à la résistance durable. L’Agronomie Tropicale 42(2):103–111Google Scholar
  93. Vales M (1987b) La résistance durable : cas de la pyriculariose du riz. II—Amélioration variétale de la résistance durable. L’Agronomie Tropicale 42(2):112–120Google Scholar
  94. Vales M (1992) Breeding and genetic strategies to fight against phytoparasites. In: Interactions between plants and microorganisms (in French). IFS and ORSTOM, Dakar, Senegal, in February 17–22nd, 1992. IFS, Stockholm, pp 353–370 Accessed 6 Jun 2017
  95. Vales M (2003) Common errors in rice recurrent selection (in Spanish). In: Proc. 1st Venezuelan Congr. Plant Breeding and Agricultural Biotechnology. Central University of Venezuela, Maracay, Venezuela, 15–17 October 2003Google Scholar
  96. Vales M (2004) Propuesta de Producción de semillas basicas de arroz según la reglamentación Francesa. Colaboración CIRAD-El Aceituno, p 6Google Scholar
  97. Vales M (2005) Common errors in rice recurrent selection. Seminar. Food Crops Research Institute (FCRI) of Yunnan Academy of Agricultural Sciences (YAAS), Kunming, Yunnan, P. R. ChinaGoogle Scholar
  98. Vales M (2010) Some innovations in rice recurrent selection: The back recurrent selection (BCRS), the simplified and efficient rice breeding method (SERB), and the plant-parasite reciprocal recurrent selection (2P2RS). Crop Prot 29(4):311–317CrossRefGoogle Scholar
  99. Vales M (2012) Course on the most concrete and applied aspects of the methods of phytopathology that support the crops genetic improvement (in Spanish). March 29, 2012, CIAT, Santa Cruz de la Sierra, Santa Cruz Dept., Bolivia, p 173 Accessed 6 Jun 2017
  100. Vales M (2013) Efficient rice genetic improvement (in Spanish). Master Class (50 h) in Plant Production, January-February 2013, Autonomous Gabriel René Moreno University, Santa Cruz de la Sierra, Santa Cruz Dept., Bolivia, p 394Google Scholar
  101. Vales M (2015) New prospects of collaboration YAAS-HAAS—CIRAD-Bolivian partners. Hainan Academy of Agricultural Sciences, Haiku, August 28, 2015; Yunnan Academy of Agronomical Sciences, Kunming, August 26, 2015, p 106Google Scholar
  102. Vales M, Guzmán R (2013) Efficient and participatory rice genetic improvement with narrow-base recurrent populations (in Spanish). In: CD of 1st Bolivian Meeting of Agricultural and Forest Innovation—In novare 2013. August 22 and 23, 2013, Hotel Camino Real, Santa Cruz de la Sierra, Santa Cruz Dept., Bolivia, p 60Google Scholar
  103. Vales M, Mello R (2013) Development of upland rice lines with wide blast resistance by marker assisted recurrent selection (MARS). MarketPlace Project [Collaboration INIAF-CIRAD—CNPAF/EMRAPA], p 4 Accessed 6 Jun 2017
  104. Vales M, Vilaplana J, Kouman K, Vodouhé S (1985) Etude de la résistance complète à Pyricularia oryzae de cinq individus Oryza longistaminata et de dix hybrides interspécifiques O. sativa X O. longistaminata. L’Agronomie Tropicale 40(2):148–156Google Scholar
  105. Vales M, Chatel M-H, Borrero J, Ospina Y (1998) Recurrent Selection using Rice (Oryza sativa) Populations with Narrow Genetic Base. 1st International Meeting of Rice—June 9–11, 98—La Habana, CubaGoogle Scholar
  106. Vales M, Dossmann J, Borrero J (2000) Delivery of the first recurrent population with narrow genetic base. Collaborative CIAT-CIRAD sub-project. Enhancement of the genetic resources for the Latin America and the Caribbean. In: Annual Report of the IP-4 Rice Project of CIAT. 2000. CIAT, Palmira. Accessed 6 Jun 2017
  107. Vales M, Borrero J, García J, Caicedo H, Cambindo F (2002) Rescue of the Traditional Rice Varieties Lost: Recovery of Genetic Resources and Traditional Knowledge. In: Annual Report 2002, International Center for Tropical Agriculture (CIAT), October 2002, pp 133–134 Accessed 6 Jun 2017
  108. Vales M, Caicedo H, Cambindo J, Alzate O, Borrero J, Arias J (2003) Genetic resources traditional and introduced in the Caucana Pacific Coast and perspective of use for the food security and sovereignty (in Spanish). In: VIII Congreso de la Sociedad Colombiana de Fitomejoramiento y Producción de Cultivos. Julio 2 al 5 del 2003, Universidad Nacional de Colombia, Bogota, Colombia, p 30 Accessed 6 Jun 2017
  109. Vales M, Seguy L, Dossmann J, Botero C, Rugeles H, Taillebois J, Bouzinac S (2006) CIRAD Rice Research Highlight: Release in Colombia of the Rice Variety ACD 25-28 in Direct Sowing Mulch Based Cropping Systems. CIRAD-El Aceituno, 3 p. Also in: Séguy, L., Bouzinac, S., 2006. Rapport annuel d’activités 2006. UR1/CIRAD-CA Brésil, 162 pp 85–87 Accessed 6 Jun 2017
  110. Vales M, Dossmann J, Delgado D, Duque MC (2009a) Parallel and interlaced recurrent selection (PAIRS): Demonstration of the feasibility of implementing PAIRS to improve complete and partial resistance to blast (Magnaporthe grisea) and some other main traits in rice. Field Crops Res 111(1–2):173–178CrossRefGoogle Scholar
  111. Vales M, Séguy L, Bouzinac S, Taillebois J (2009b) Improvement of cropping systems by integration of rice breeding: a novel genetic improvement strategy. Euphytica 167(2):161–164CrossRefGoogle Scholar
  112. Vales M, Guzmán R, Tharreau D, Adreit H, Milazzo J (2012) Bolivian experience in molecular biology for the development of the agronomy: the first results in rice (in Spanish). In: 2nd International Workshop: molecular tools for the identification of utile microorganisms—3rd Meeting of the National Network of the Scientific and Technological Research on the Food. April 11–13 of 2012, Santa Cruz de la Sierra, Bolivia: 37 pp Accessed 6 Jun 2017
  113. Vales MJ, Huallpa B, Anzoátegui T, Mostacedo B, Cazon MI (2016) Blast (Magnaporthe oryzae pv Triticum): the next major pathogen of wheat in China? The Bolivian breeding program. College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China, September 9th, p 148Google Scholar
  114. Valès M (1984) Trip report in CNPAF-EMBRAPA, Goiânia, Brazil, March 7th to April 6th, IRAT, (Fr), p 30Google Scholar
  115. Van der Plank JE (1963) Plant diseases; epidemics and control. Academic Press, New York & London, p 349Google Scholar
  116. Viedma LQ (2005) Wheat blast occurrence in Paraguay. Centro Regional de Investigación Agrícola, Dirección de Investigación Agrícola, Ministerio de Agricultura y Ganadería, Km 16, Ruta VI, Capitán Miranda, Itapúa, Paraguay. In: Abstracts presented at the joint meeting of the APS Caribbean Division, APS Southern Division, Latin American Association of Plant Pathology, and Mexican Society for Plant Pathology in South Padre Island, Texas, April 6–11, 2003. Phytopathology 95(6 Supplement):S152. Publication no. P-2005-0020-CRA. Accessed 6 Jun 2017
  117. Vikram P, Burgueño J, Franco J, Reynolds M, Saint Pierre C, Crossa J, Guzmán García C, Payne T, Sansaloni C and Singh S (2015) Mexican and Iranian Wheat Landrace Core Collections Useful resources for the global wheat research community. Plant and Animal Genome Conference XXIII. January 10–14, 2015, San Diego, CA, USA. Accessed 6 Jun 2017
  118. Wang GL, Valent B (2017) Durable resistance to rice blast. Science 355(6328):906–907CrossRefPubMedGoogle Scholar
  119. Warburton ML, Crossa J, Franco J, Kazi M, Trethowan R, Rajaram S, Pfeiffer W, Zhang P, Dreisigacker S, van Ginkel M (2006) Bringing wild relatives back into the family: recovering genetic diversity in CIMMYT improved wheat germplasm. Euphytica 149:289–301CrossRefGoogle Scholar
  120. Wingen LU, Orford S, Goram R, Leverington-Waite M, Bilham L, Patsiou TS, Ambrose M, Dicks J, Griffiths S (2014) Establishing the A. E. Watkins landrace cultivar collection as a resource for systematic gene discovery in bread wheat. Theor Appl Genet 127:1831–1842CrossRefPubMedPubMedCentralGoogle Scholar
  121. Wulff BBH, Moscou MJ (2014) Strategies for transferring resistance into wheat: from wide crosses to GM cassettes. Front Plant Sci 5:11CrossRefGoogle Scholar
  122. Zellerhoff N, Jarosch B, Groenewald JZ, Crous PW, Schaffrath U (2006) Nonhost resistance of barley is successfully manifested against Magnaporthe grisea and a closely related Pennisetum-infecting lineage but is overcome by Magnaporthe oryzae. Mol Plant Microbe Interact 19(9):1014–1022CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  • M. Vales
    • 1
    • 4
  • T. Anzoátegui
    • 2
    • 4
  • B. Huallpa
    • 3
    • 4
  • M. I. Cazon
    • 2
    • 4
  1. 1.CIRAD, UMR BGPISanta Cruz De La SierraBolivia
  2. 2.UAGRM, FCA, Agronomical Research Institute “El Vallecito” (IIAV)Santa Cruz De La SierraBolivia
  3. 3.INIAF, Research & AT-departmental Santa CruzMonteroBolivia
  4. 4.CIRAD, UMR BGPIMontpellierFrance

Personalised recommendations