Advertisement

Euphytica

, 214:22 | Cite as

Breeding strategies in Melilotus albus Desr., a salt-tolerant forage legume

  • Juan M. Zabala
  • Lorena Marinoni
  • Julio A. Giavedoni
  • Gustavo E. Schrauf
Article
  • 93 Downloads

Abstract

Melilotus albus Desr. is recognized as one of the species with greatest potential as a forage source for ruminants in saline rangelands. The objectives of the current research were threefold: (1) to estimate heritability and genetic correlation of traits associated with winter forage production and regrowth capacity in M. albus prebreeding material, as measured in spaced plants grown in a nonsaline environment; (2) to evaluate winter forage production of a selected population grown in plots at sites with contrasting soil salinities; and (3) to evaluate the agronomic performance of blended (mixed) populations and monocultures of M. albus grown in plots. Results indicated presence of genetic variability associated with winter production and regrowth capacity in a prebreeding population selected for one trait, viz. late flowering. Results also showed that selection in a nonsaline environment did not modify the relative salinity tolerance of M. albus populations. Finally, varietal mixtures (blends) of two selected populations showed a slight increase in and more seasonally balanced dry matter (DM) yield than monocultures. Mixtures combined favorable characteristics from the two selected populations (i.e., highest winter forage production, as expressed in the SP1 population, and highest regrowth capacity, as expressed in the SP2 population). Furthermore, results indicated that M. albus genotypes naturalized in Argentina could be used as genetic resources for sweet clover breeding for saline environments and that alternative breeding approaches could improve forage productivity in saline environments.

Keywords

Forage breeding Abiotic stress Blend Mixture Sweet white clover 

Notes

Acknowledgements

The present work was supported by the Program of Documentation, Conservation, and Valorization of Native Flora of the National University of the Litoral (FCA-UNL Argentina), PICTO 2014-011 project and by the 50120110100090 project grant awarded by the FCA-UNL, Argentina.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. Alcock MB, Morgan EW (1966) The effect of frequency of defoliation on the yield of mixtures of S22 (diploid) and tetra (tetraploid) Italian ryegrass in early establishment. Grass Forage Sci 21:62–64CrossRefGoogle Scholar
  2. Annicchiarico P (2003) Breeding white clover for increased ability to compete with associated grasses. J Agric Sci 140:255–266CrossRefGoogle Scholar
  3. Antolín MC, Hekneby M, Sánchez-Díaz M (2005) Contrasting responses of photosynthesis at low temperatures in different annual legume species. Photosynthetica 43:65–74CrossRefGoogle Scholar
  4. Bennett E, Frankel O, Bennet E (1970) Tactics of plant exploration. In: Frankel O, Bennet E (eds) Genetic resources in plants—their exploration and conservation. Blackwell, Oxford, pp 157–179Google Scholar
  5. Brummer EC (1999) Capturing heterosis in forage crop cultivar development. Crop Sci 39:943–954CrossRefGoogle Scholar
  6. Cabido M, Manzur A, Carranza L, González-Albarracín C (1994) La vegetación y el medio físico del Chaco Árido en la provincia de Córdoba, Argentina Central [The vegetation and physical environment of Chaco Árido in the Cordoba Province, Central Argentina]. Phytocoenologia 24:423–460 (in Spanish) CrossRefGoogle Scholar
  7. Casler MD, Brummer EC (2008) Theoretical expected genetic gains for among-and-within-family selection methods in perennial forage crops. Crop Sci 48:890–902CrossRefGoogle Scholar
  8. Casler MD, Vogel K, Balasko JA, Berdahl JD, Miller DA, Hansen JL et al (2000) Genetic progress from 50 years of smooth bromegrass breeding. Crop Sci 40:13–22CrossRefGoogle Scholar
  9. Ceccarelli S, Grando S, Impiglia A (1998) Choice of selection strategy in breeding barley for stress environments. Euphytica 103:307–318CrossRefGoogle Scholar
  10. Corwin DL, Kaffka SR, Hopmans JW, Mori Y, Van Groenigen JW, Van Kessel C et al (2003) Assessment and field-scale mapping of soil quality properties of a saline-sodic soil. Geoderma 114:231–259CrossRefGoogle Scholar
  11. Cruz CD, Regazzi AJ (1997) Modelos biométricos aplicados ao melhoramento genético [Biometrical models applied to genetic breeding]. Universidade Federal de Vicosa, VicosaGoogle Scholar
  12. Dear BS, Reed K, Craig AD (2008) Outcomes of the search for new perennial and salt tolerant pasture plants for southern Australia. Aust J Exp Agric 48:578–588CrossRefGoogle Scholar
  13. Del Pozo A, Ovalle C, Aronson J, Avendaño J (2002) Ecotypic differentiation in Medicago polymorpha L. along an environmental gradient in central Chile. II. Winter growth as related to phenology and temperature regime. Plant Ecol 160:53–59CrossRefGoogle Scholar
  14. Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2013) InfoStat versión 2013 [InfoStat version 2013, webpage on the Internet]. Córdoba, Argentina: InfoStat Group, Facultad de Ciencias Agrarias (FCA), Universidad Nacional de Córdoba (UNC), Argentina. http://www.infostat.com.ar (in Spanish)
  15. Espinoza LD, Huguet T, Julier B (2012) Multi-population QTL detection for aerial morphogenetic traits in the model legume Medicago truncatula. Theor Appl Genet 124:739–754CrossRefGoogle Scholar
  16. Evans PM, Kearney GA (2003) Melilotus albus Medic is productive and regenerates well on saline soils neutral to alkaline reaction in the high rainfall zone of south-western Victoria. Aust J Exp Agric 43:349–355CrossRefGoogle Scholar
  17. Evans PM, Willson KJ, Hall EJ (1992) Influence of genotype, seed size, and seedling density on the winter herbage production of subterranean clover (Trifolium subterraneum L.) lines and cultivars. N Z J Agric Res 35:143–149CrossRefGoogle Scholar
  18. Evans DR, Williams TA, Jones S, Evans SA (1995) The effect of blending white clover varieties and their contribution to a mixed grass/clover sward under continuous sheep stocking. Grass Forage Sci 50:10–15CrossRefGoogle Scholar
  19. Ferrari L, Maddaloni J (2001) Trebol de olor blanco y trebol de olor amarillo [White sweet clover and yellow sweet clover]. In: Forrajeras y pasturas del ecosistema templado húmedo Argentino [Forage and grassland ecosystems in the humid temperate regions of Argentina] (1st ed). Universidad Nacional de Lomas de Zamora, Buenos Aires, pp 303–315 (in Spanish) Google Scholar
  20. Frankow-Lindberg BE, Von Fircks HA (1998) Population fluctuations in three contrasting white clover cultivars under cutting, with particular reference to overwintering properties. J Agric Sci 131:143–153CrossRefGoogle Scholar
  21. Goulas E, Schubert M, Kieselbach T, Kleczkowski LA, Gardeström P, Schröder W et al (2006) The chloroplast lumen and stromal proteomes of Arabidopsis thaliana show differential sensitivity to short- and long-term exposure to low temperature. Plant J 47:720–734CrossRefPubMedGoogle Scholar
  22. Greenway H, Munns R (1980) Mechanism of salt tolerance in non-halophytes. Annu Rev Plant Physiol 31:149–190CrossRefGoogle Scholar
  23. Hamblin J, Rowell JG, Redden R (1976) Selection for mixed cropping. Euphytica 25:97–106CrossRefGoogle Scholar
  24. Hein NE, Hein WIH, Quaino OR (1989) Características de los complejos de suelos de la parte central de Santa Fe [Soil characteristics in Santa Fe, Argentina]. Ciencia del Suelo 7:97–102 (in Spanish) Google Scholar
  25. Hill J (1996) Breeding components for mixture performance. Euphytica 92:135–138CrossRefGoogle Scholar
  26. Holland JB, Nyquist WE, Cervantes-Martínez CT (2003) Estimating and interpreting heritability for plant breeding: an update. Plant Breed Rev 22:9–112Google Scholar
  27. Humphreys MO (1997) The contribution of conventional plant breeding to forage crop improvement. In: Proceedings of the 18th international grassland congress, Calgary, Alberta, pp 71–78Google Scholar
  28. INASE, National Seeds Institute of Argentina (2003a) Cultivar registn Nº 7562 of Bromus catharticus named “Quidel”. http://www.inase.gov.ar/consultaGestion/gestiones. Accessed 8 June 2016 (in Spanish)
  29. INASE, National Seeds Institute of Argentina (2003b) Cultivar registn Nº 7563 of Bromus catharticus named “Quintun”. http://www.inase.gov.ar/consultaGestion/gestiones. Accessed 8 June 2016 (in Spanish)
  30. INASE, National Seeds Institute of Argentina (2016) [database on the Internet]. Listado de Cultivares—Registro Nacional de Cultivares [Cultivar list—National Register of Cultivars]. http://www.inase.gov.ar/consultaGestion/gestiones. Accessed 8 June 2016 (in Spanish)
  31. Julier B, Huguet T, Chardon F, Ayadi R, Pierre J, Prosperi JM et al (2007) Identification of quantitative trait loci influencing aerial morphogenesis in the model legume Medicago truncatula. Theor Appl Genet 114:1391–1406CrossRefPubMedGoogle Scholar
  32. Kirigwi FM, Van Ginkel M, Trethowan R, Sears RG, Rajaram S, Paulsen GM (2004) Evaluation of selection strategies for wheat adaptation across water regimes. Euphytica 135:361–371CrossRefGoogle Scholar
  33. Liu W, Hou A, Peffley EB, Auld DL, Powell RJ (2006) The inheritance of a basal branching type in guar. Euphytica 151:303–309CrossRefGoogle Scholar
  34. Maddaloni J (1986) Forage production on saline and alkaline soils in the humid region of Argentina. Reclam Reveg Res 5:11–16Google Scholar
  35. McFerson JR (1998) From in situ to ex situ and back: the importance of characterizing germplasm collections. Hort Sci 33:1134–1135Google Scholar
  36. McSteen P, Leyser O (2005) Shoot branching. Annu Rev Plant Biol 56:353–374CrossRefPubMedGoogle Scholar
  37. Meyer DW (2005) Sweetclover production and management. North Dakota State University, NDSU Extension Service, Fargo, pp 1–10Google Scholar
  38. Mohammadi SA, Prasanna BM (2003) Analysis of genetic diversity in crop plants—salient statistical tools and considerations. Crop Sci 43:1235–1248CrossRefGoogle Scholar
  39. Munns R, James RA, Xu B, Athman A, Conn SJ, Jordans C et al (2012) Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nat Biotechnol 30:360–364CrossRefPubMedGoogle Scholar
  40. Nichols P, Loi A, Nutt BJ, Evans PM, Craig AD, Pengelly BC et al (2007) New annual and short-lived perennial pasture legumes for Australian agriculture—15 years of revolution. Field Crop Res 104:10–23CrossRefGoogle Scholar
  41. Nunes ME, Smith G (2003) Electrolyte leakage assay capable of quantifying freezing resistance in rose clover. Crop Sci 43:1349–1357CrossRefGoogle Scholar
  42. Nyquist WE, Baker RJ (1991) Estimation of heritability and prediction of selection response in plant populations. Crit Rev Plant Sci 10:235–322CrossRefGoogle Scholar
  43. Rebetzke GJ, Chapman SC, McIntyre L, Richards RA, Condon AG, Watt M, et al. (2009) Grain yield improvement in water-limited environments. In: Wheat, science and trade. Wiley–Blackwell, Ames, pp 215–249Google Scholar
  44. Rhodes I (1969) The yield, canopy structure and light interception of two ryegrass varieties in mixed culture and monoculture. J Br Grass Soc 24:123–127CrossRefGoogle Scholar
  45. Richards RA (1983) Should selection for yield in saline regions be made on saline or non-saline soils? Euphytica 32:431–438CrossRefGoogle Scholar
  46. Richards RA (1992) Increasing salinity tolerance of grain crops: is it worthwhile? Plant Soil 146:89–98CrossRefGoogle Scholar
  47. Rogers ME, Craig AD, Munns R, Colmer TD, Nichols PGH, Malcolm CV et al (2005) The potential for developing fodder plants for the salt-affected areas of southern and eastern Australia: an overview. Aust J Exp Agric 45:301–329CrossRefGoogle Scholar
  48. Rogers ME, Colmer TD, Frost K, Henry D, Cornwall D et al (2008) Diversity in the genus Melilotus for tolerance to salinity and waterlogging. Plant Soil 304:89–101CrossRefGoogle Scholar
  49. Schrauf GE, Zabala JM, Galeazzi A, Davin J, Acosta G, Giavedoni JA et al (2003) Avances en el mejoramiento genético de Melilotus albus [Advances in Melilotus albus breeding]. J Basic Appl Genet 15:127 (in Spanish) Google Scholar
  50. Schultze-Kraft R (1979) Colección de germoplasma en el campo [Germplasm collection in the field]. In: Manual para la colección, preservación y caracterización de recursos forrajeros tropicales [The Manual for the collection, preservation and characterization of tropical forage resources]. International Center for Tropical Agriculture (CIAT), Cali, pp 9–14 (in Spanish) Google Scholar
  51. Searle SR (1971) A biometrics invited paper. Topics in variance component estimation. Biometrics 27:1–76CrossRefGoogle Scholar
  52. SIGA (2017) Sistema de información y gestión agrometeorológico [Agro-meteorological information system]. http://inta.gob.ar/unidades/212000/siga (in Spanish)
  53. Smith WK, Gorz HL (1965) Sweet clover improvement. Adv Agron 17:163–231CrossRefGoogle Scholar
  54. Smith GR, Evers GW, Ocumpaugh WR, Forbes TDA, Ong K, Foster-Malone J (2017) Registration of ‘Silver River’ sweetclover. J Plant Regist 11:112–115CrossRefGoogle Scholar
  55. Snaydon RW (1991) Replacement or additive designs for competition studies? J Appl Ecol 28:930–946CrossRefGoogle Scholar
  56. Trigg P (2004) Melilotus albus (Sweet clover) ‘Jota’. Plant Var J 17:127–128Google Scholar
  57. Turkington R (1996) Intergenotypic interactions in plant mixtures. Euphytica 92:105–119CrossRefGoogle Scholar
  58. Turkington RA, Cavers PB, Rempel E (1978) The biology of Canadian weeds 29. Melilotus alba Desr. and M. officinalis (L.) Lam. Can J Plant Sci 49:1–20Google Scholar
  59. Van Minnebruggen A, Cnops G, Saracutu O, Goormachtig S, Van Bockstaele E, Roldán-Ruiz I et al (2014) Processes underlying branching differences in fodder crops. Euphytica 195:301–313CrossRefGoogle Scholar
  60. Vencovsky R, Barriga P (1992) Genética biometrica no fitomelhoramento [Biometric genetics in plant breeding]. Brazilian Society of Genetics, Ribeirao Preto (Portuguese) Google Scholar
  61. Willey RW (1979) Intercropping its importance and research needs, part I. Competition and yield advantages. Field Crop Abstr 32:1–10Google Scholar
  62. Woodfield DR, Brummer EC (2001) Integrating molecular techniques to maximize the genetic potential of forage legumes. In: Spangenberg G (ed) Molecular breeding of forage crops. Proceedings of the 2nd international symposium, Kluwer, Dordrecht, pp 51–65Google Scholar
  63. Zabala JM, Schrauf G, Baudracco J, Giavedoni J, Quaino O, Rush P (2012) Selection for late-flowering and greater number of basal branches increases the leaf dry matter yield in Melilotus albus Desr. Crop Pasture Sci 63:370–376CrossRefGoogle Scholar
  64. Zuloaga FO, Morrone O (1999) Catálogo de las plantas vasculares de la República Argentina II. Dicotyledoneae [Catalog of vascular plants of the Second Republic of Argentina. Dicotyledoneae]. Monog Syst Bot 74:1–1269 (in Spanish) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2018

Authors and Affiliations

  • Juan M. Zabala
    • 1
  • Lorena Marinoni
    • 1
  • Julio A. Giavedoni
    • 1
  • Gustavo E. Schrauf
    • 2
  1. 1.Programa de Documentación, Conservación y Valoración de la Flora Nativa, Facultad de Ciencias AgrariasUniversidad Nacional del LitoralEsperanzaArgentina
  2. 2.Facultad de AgronomíaUniversidad Nacional de Buenos AiresBuenos AiresArgentina

Personalised recommendations