Skip to main content
Log in

Sources of resistance to Phytophthora root rot within the genus Beta

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Phytophthora root rot caused by Phytophthora drechsleri Tucker is one of the most devastating sugar beet diseases in tropical areas. To identify genetic resources resistant to this disease, an aggressive isolate of P. drechsleri was selected. Then, a screening method was optimized based on the standard scoring scales of 1–9 (1: no symptoms, 9: complete plant death). Finally, 19 sugar beet lines, three cultivars, and 14 accessions of the wild species Beta vulgaris subsp. maritima, B. macrocarpa, B. procumbens, and B. webbiana were evaluated for resistance to the most aggressive isolate of P. drechsleri by using the optimized method (inoculum included 20 g of rice seed together with superficial wound creation). The isolates of P. drechsleri had significant variation in aggressiveness, and Kv10 was the most aggressive isolate on the susceptible variety Rasoul. The lines O.T.201-15, SP85303-0 (resistant check), and S2-24.P.107 had the lowest disease index with scores of 3.09, 3.13, and 3.27 respectively; they were categorized into the resistant group. The interaction between isolates and genotypes was not significant, which indicated the same response of each genotype to different isolates. Investigating the resistance of different generations of sugar beet revealed that progeny selection would be an effective method for increasing the resistance level of breeding materials to P. drechsleri. Among the wild species, the accession 9402 belonging to B. macrocarpa and the accession 7234 of B. vulgaris subsp. maritima had the lowest disease index (2.29 and 2.60, respectively) and were categorized into the resistant group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Asher MJC (1993) Rhizomania. In: Cooke DA, Scott RK (eds) The sugar beet crop. Chapman & Hall, London, pp 311–346

    Chapter  Google Scholar 

  • Baniahashemi Z (2004) A method to monitor the activity of Phytophthora spp. in the root zone of Pistacia spp. Phytopathol Mediterr 43:411–414

    Google Scholar 

  • Banihashemi Z (1998) Phytophthora root rot of sugar beet and black stem rot of sunflower in Fars provience. Iran J Plant Pathol 34:75–76

    Google Scholar 

  • Banihashemi Z, Fatehi J (1989) Reaction of cucurbit cultivars to Phytophthora drechsleri and P. capsici in greenhouse. In: Proceeding of 9th Iranian Plant Protection Congress. pp 9–14

  • Banihashemi Z, Mirtalebi M (2008) Safflower seedling a selective host to discriminate Phytophthora melonis from Phytophthora drechsleri. J Phytopathol 156:499–501

    Article  Google Scholar 

  • Barocka KH (1985) Zucker und Futterrüben (Beta vulgaris L.). In: Hoffmann W, Mudra A, Plarre W (eds) Lehrbuch der Züchtung Landwirtschaftlicher Kulturpflanzen (in German). Verlag Paul Parey, Berlin, pp 245–287

    Google Scholar 

  • Bennett CW, Leach LD (1971) Diseases and their control. In: Johnson RT et al (eds) Advances in sugar beet production: principles and practices. IOWA State University Press, Amer, pp 81–278

    Google Scholar 

  • Bosland PW, Lindsey DL (1991) A seedling screen for Phytophthora root rot of pepper, Capsicum annuum. Plant Dis 75:1048–1050

    Article  Google Scholar 

  • Brasier CM, Scott JK (1994) European oak declines and global warming: a theoretical assessment with special reference to the activity of Phytophthora cinnamomi. EPPO Bull 24:221–232

    Article  Google Scholar 

  • Büttner G, Pfahler B, Marlander B (2004) Greenhouse and field techniques for testing sugar beet for resistance to Rhizoctonia root and crown rot. Plant Breed 123:158–166. doi:10.1046/j.1439-0523.2003.00967.x

    Article  Google Scholar 

  • Cai D, Kleine M, Kifle S et al (1997) Positional cloning of a gene for nematode resistance in sugar beet. Science 275:832–834

    Article  CAS  PubMed  Google Scholar 

  • Campbell LG, Windels C, Fugate KK, Brantner J (2013) Postharvest respiration rate and sucrose concentration of Rhizoctonia-infected sugarbeet roots. Sugarbeet Res Ext Rep 43:114–120

    Google Scholar 

  • Candole BL, Conner PJ, Ji P (2010) Screening Capsicum annuum accessions for resistance to six isolates of Phytophthora capsici. HortScience 45:254–259

    Google Scholar 

  • Da Via DJ, Knowles PF, Klisiewicz JM (1981) Evaluation of the world safflower collection for resistance to Phytophthora. Crop Sci 21:226–229

    Article  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19–21

    Article  CAS  Google Scholar 

  • Ebrahimi-Koulaee H, Mahmoudi SB (2010) Evaluation of the resistance of sugar beet breeding lines to rhizoctonia root and crown rot. J Sugar Beet 26:31–42

    Google Scholar 

  • Eikemo H, Stensvand A, Tronsmo AM (2000) Evaluation of methods of screening strawberry cultivars for resistance to crown rot caused by Phytophthora cactorum. Ann Appl Biol 137:237–244

    Article  Google Scholar 

  • Ershad D (2009) Fungi of Iran. Iranian Research Institute of Plant Protection, Tehran

    Google Scholar 

  • Ervin DC, Riberio OK (1996) Phytophthora diseases worldwide. APS Press, St. Paul

    Google Scholar 

  • Esmaili- Shirazifard E, Banihashemi Z (2008) The role of phytophthora melonis and P. drechsleri in cucurbit root rot in Iran. Iran J Plant Pathol 44:54–72

    Google Scholar 

  • FAO (2009) Sugar beet white sugar. Agribusiness Hanbook. European Bank and FAO, Rome

    Google Scholar 

  • Fatemi J (1971) Phytophthora and Pythium root rot of sugar beet in Iran. J Phytopathol 71:25–28

    Article  Google Scholar 

  • Fattahi S, Zafari D, Mahmoudi B (2011) Evaluation of superior sugar beet genotypes for resistance to important root rot pathogens in the greenhouse. J Sugar Beet 27:25–38

    Google Scholar 

  • Frampton J, Benson DM (2012) Seedling resistance to Phytophthora cinnamomi in the genus Abies. Ann For Sci 69:805–812

    Article  Google Scholar 

  • Gates LF, Hull R (1954) Experiments on black leg disease of sugar beet seedlings. Ann Appl Biol 41:541–561

    Article  CAS  Google Scholar 

  • Habibi B (1975) Some observations on the ecology of Phytophthora drechsleri, a fungus causing sugarbeet root rot. Iran J plant Pathol 11:88–98

    Google Scholar 

  • Hajebrahimi S, Banihashemi Z (2011) Host range of Phytophthora parsiana: a new high temperature pathogene of woody plants. Phyopathol Medit 50:159–165

    Google Scholar 

  • Hanson LE, Panella L (2006) Rhizoctonia root rot resistance of Beta PIs from the USDA-ARS NPGS, 2006. https://www.ars.usda.gov/ARSUserFiles/30122500/SBRPubs20072008/RhizoctoniarootrotresistanceofBetaPIsfromtheUSDAARSNPGS2006.pdf. Accessed 9 May 2017

  • Harveson RM, Hein GL, Smith JA et al (2002) An integrated approach to cultivar evaluation and selection for improving suger beet profitability: a successful case study for the central high plains. Plant Dis 86:192–204

    Article  Google Scholar 

  • Hecker RJ, Ruppel EG (1977) Rhizoctonia root-rot resistance in sugarbeet: breeding and related research. J Am Soc Sugar Beet Technol 19:246–256

    Article  Google Scholar 

  • Hoagland DR, Snyder WC (1933) Nutrition of strawberry plants under controlled conditions. Proc Am Soc Hortic Sci 30:288–296

    Google Scholar 

  • Jacobsen BJ (2006) Root rot diseases of sugar beet. Zb Matice Srp za Prir Nauk 110:9–19

    Google Scholar 

  • Karaoglanidis GS, Karadimos DA, Klonari K (2000) First report of Phytophthora root rot of sugar beet, caused by Phytophthora cryptogea, in Greece. Plant Dis 84:593

    Article  Google Scholar 

  • Kim MJ, Shim CK, Kim YK et al (2013) Evaluation of watermelon germplasm for resistance to Phytophthora blight caused by Phytophthora capsici. Plant Pathol J 29:87–92

    Article  PubMed  PubMed Central  Google Scholar 

  • Luterbacher MC, Asher MJC, Beyer W et al (2005) Sources of resistance to diseases of sugar beet in related beta germplasm: II. Soil-borne diseases. Euphytica 141:49–63

    Article  Google Scholar 

  • Mahmoudi B, Afzali H, Banihashemi M (2002) Sugar beet root rot caused by Phytophthora megasperma in Khuzestan, Iran. In: Proceedings of the 15th Iranian Plant protection congress. Kermanshah, Iran

  • Mahmoudi B, Mesbah M, Alizadeh A (2004) Pathogenic variability of sugar beet isolates of Rhizoctonia solani. Iran J Plant Pathol 40:253–280

    Google Scholar 

  • Mahmoudi B, Ebrahimi-Koulaei H, Hasani M, et al (2014) Developement of sugar beet S1 pollinator lines resistant to Pythium root rot. In: Proceedings of the 1st International and 13th Iranian Crop Science Congress 3rd Iranian Seed Science and Technology Conference. Seed and Plant improvement Institute Karaj, Iran

  • Mansoori B, Banihashemi Z (1982) Evaluating cucurbit seedling resistance to Phytophthora drechsleri. Plant Dis 66:373–376

    Article  Google Scholar 

  • Mesbah M, Scholten OE, De Bock TSM, Lange W (1997) Chromosome localisation of genes for resistance to Heterodera schachtii, Cercospora beticola and Polymyxa betae using sets of Beta procumbens and B. patellaris derived monosomic additions in B. vulgaris. Euphytica 97:117–127. doi:10.1023/A:1003088922086

    Article  Google Scholar 

  • Mirzaiian A, Pahlevani M, Soltanloo H, Razavi SE (2014) Improving field establishment of safflower in soils infected by Phytophthora drechsleri and Pythium ultimum. Int J Plant Prod 9:1–16

    Google Scholar 

  • Mostowfizadeh-Ghalamfarsa R, Banihashemi Z (2015a) Species-specific PCR identification and detection of Phytophthora drechsleri, P. cryptogea and P. erythroseptica. Iran J Plant Pathol 51:541–553

    Google Scholar 

  • Mostowfizadeh-Ghalamfarsa R, Banihashemi Z (2015b) A revision of Iranian Phytophthora drechsleri isolates from Cucurbits based on multiple gene genealogy analysis. J Agric Sci Technol 17:1347–1363

    Google Scholar 

  • Mostowfizadeh-Ghalamfarsa R, Banihashemi Z, Cooke DEL (2006) Potato pink rot: a criterion for discrimination of Phytophthora melonis from P. drechsleri. Iran J Plant Pathol 41:191–201

    Google Scholar 

  • Nasr-Esfahani M, Chatraee M, Shafizadeh S, Jalaji S (2012) Evaluation of resistance of cucurbit and cucumber cultivars to Phytophthora drechsleri in greenhouse. Seed Plant Improv J 28:407–417

    Google Scholar 

  • Olson HA, Benson DM (2013) Host specificity and variations in aggressiveness of North Carolina isolates of Phytophthora cryptogea and P. drechsleri in greenhouse ornamental plants. Plant Dis 97:74–80

    Article  Google Scholar 

  • Panabières F, Ali GS, Allagui MB et al (2016) Phytophthora nicotianae diseases worldwide: new knowledge of a long-recognised pathogen. Phytopathol Mediterr 55:20–40

    Google Scholar 

  • Panella L (1998) Screening and utilizing Beta genetic resources with resistance to Rhizoctonia root rot and Cercospora leaf spot in sugar beet breeding program. In: Frese L, Panella L, Srivastava HM, Lang W (eds) International Beta Genetics Resources Network. A report on the 4th International Beta Genetics Resources Workshop and World Beta network conference held at the Aegean Agricultural Research Institute, Izmir, Turkey, 28 February–3 March 1996. International Crop Network Series No. 12, International Plant Genetic Resources Institute, Rome, pp 62–72

  • Panella L, Lewellen RT (2005) Registration of FC201, a heterogeneous, disease-resistant, monogerm, O-type sugar beet population. Crop Sci 45:1169–1170

    Article  Google Scholar 

  • Panella L, Campbell LG, Eujayl IA et al (2015a) USDA-ARS sugarbeet releases and breeding over the past 20 years. J Sugar Beet Res 52:22–71

    Article  Google Scholar 

  • Panella LW, Vagher TO, Fenwick A (2015b) Rhizoctonia crown and root rot resistance evaluation of Beta PIs in Fort Collins. Plant Dis Manag Rep 9:137

    Google Scholar 

  • Panella L, Ruppel EG, Hecker RJ (2016) Registration of four rhizoctonia root rot resistant multigerm sugarbeet germplasms, FC716, FC717, FC718 and FC719: USDA ARS. https://www.ars.usda.gov/plains-area/fort-collins-co/center-for-agricultural-resources-research/soil-management-and-sugarbeet-research/docs/registration-of-four-rhizoctonia-root-rot-resistant-multigerm-sugarbeet-germplasms-fc716-fc717-fc718-and-fc719/. Accessed 9 May 2017

  • Quesada-Ocampo LM, Fulbright DW, Hausbeck MK (2009) Susceptibility of Fraser fir to Phytophthora capsici. Plant Dis 93:135–141

    Article  Google Scholar 

  • Sabluk VT, Shendryk RY, Zapolska NM (2005) Pests and diseases of sugar beet. Kolobig, Kyiv, 448 p

    Google Scholar 

  • Scholten OE, De Bock TSM, Klein-Lankhorst RM, Lange W (1999) Inheritance of resistance to beet necrotic yellow vein virus in Beta vulgaris conferred by a second gene for resistance. TAG Theor Appl Genet 99:740–746

    Article  CAS  PubMed  Google Scholar 

  • Sheikholeslami D, Yonesi M, Safaee H (2006) Determination of fungi involved in sugar beet root rot and their distribution in Kermanshah province. J sugar beet 21:99–100

    Google Scholar 

  • Stamps DJ, Waterhouse GM, Newhook FJ, Hall GS (1990) Revised tabular key to the species of Phytophthora. CAB-International, Wallingford

    Google Scholar 

  • Stirling AM, Irwin JAG (1986) Etiology of a newly described root rot of guar (Cyamopsis tetragonoloba) in Australia caused by Phytophthora cryptogea. Plant Pathol 35:527–534

    Article  Google Scholar 

  • Thompson SE, Levin S, Rodriguez-Iturbe I (2014) Rainfall and temperatures changes have confounding impacts on Phytophthora cinnamomi occurrence risk in the southwestern USA under climate change scenarios. Glob Chang Biol 20:1299–1312. doi:10.1111/gcb.12463

    Article  PubMed  Google Scholar 

  • Tompkins CM, Richards BL, Tucker CM et al (1936) Phytophthora rot of sugar beet. J Agric Res 52:205–216

    Google Scholar 

  • Vale FXR, Parlevliet JE, Zambolim L (2001) Concepts in plant disease resistance. Fitopatol Bras 26:577–589

    Article  Google Scholar 

  • Waterhouse GM (1963) Key to the species of Phytophthora de Bary. Mycol Pap 92:1–22

    Google Scholar 

  • Whitney ED, Duffus JE (1986) Compendium of beet diseases and insects. American Phytopathological Society, San Antonio

    Google Scholar 

  • Windels CE, Panella LW, Ruppel EG (1995) Sugar beet germplasm resistant to Rhizoctonia root and crown rot withstands disease caused by several pathogenic isolates of Rhizoctonia solani AG-2-2. Sugar Beet Res Ext Rep 26:179–185

    Google Scholar 

  • Zamani-Noor N, Minassian V, Banihashemi Z, Ghalamfarsa RM (2004) Identification and pathogenicity of Pythium species on sugar beet in Khuzestan Province. Iran J Plant Pathol 40:179–200

    Google Scholar 

  • Zapolska NM (2014) Sugar beet root rot during vegetation period in Ukraine. In: Opalko AO, Weisfeld LI, Bekuzarova SA et al (eds) Plant breeding and biotic diversity. Ecological consequences of increasing crop productivity. Apple Academic Press, New Jersey, pp 203–216

    Google Scholar 

  • Zhang Z, Hao J, Yuan J et al (2014) Phytophthora root rot resistance in soybean E00003. Crop Sci 54:492–499

    Article  Google Scholar 

  • Zimmer DE, Urie AL (1967) Influence of irrigation and soil infestation with strains of Phytophthora drechsleri on root rot resistance of safflower. Phytopathology 57:1056–1059

    Google Scholar 

Download references

Acknowledgements

We thank Ferdowsi University of Mashhad, Iran, for supporting this research with project number 3/40193 approved on 16/3/2016. The authors are thankful to Dr. Zia Banihashemi and Dr. Maryam Mirtalebi for supplying the isolates, and to Plant Breeding Department of Sugar Beet Seed Institute (SBSI), Karaj, Iran for providing sugar beet breeding lines. Also, we would like to thank Dr. Lothar Frese and Dr. Abazar Rajabi for supplying germplasm and critical review of the manuscript, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parissa Taheri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kakueinezhad, M., Taheri, P., Mahmoudi, B. et al. Sources of resistance to Phytophthora root rot within the genus Beta . Euphytica 213, 193 (2017). https://doi.org/10.1007/s10681-017-1985-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-017-1985-2

Keywords

Navigation