, 213:173 | Cite as

Population structure, genetic relatedness and linkage disequilibrium blocks in cultivars of tropical soybean (Glycine max)

  • Rodrigo Iván Contreras-SotoEmail author
  • Marcelo Berwanger de Oliveira
  • Danielle Costenaro-da-Silva
  • Carlos Alberto Scapim
  • Ivan Schuster


Soybean (Glycine max L.) is an annual, self-pollinated species, whose genetic base in Brazil is the result of several cycles of selection and effective recombination among a relatively small number of genotypes selected from the USA cultivars. This frequent selection, admixed population, and the crossing of a small number of cultivars can lead to increase the genetic relationship and affect the patterns of population structure. These factors affect the patterns of linkage disequilibrium (LD) blocks, which can be an effective approach for the screening of target loci for agricultural traits in cultivars of tropical soybean. The objectives of this research were to analyze LD blocks, estimate population structure and relatedness through of genotyping of 169 cultivars of tropical soybean by using a BARCSoySNP6K of Illumina iScan platform. The genotyping revealed a high genetic relatedness and population structure among the cultivars of soybean in Brazil, suggesting the existence of a shared genetic base. Our results provide a help to understand the distribution of genetic variation contained within the Brazilian soybean cultivar collection. We showed that the extensive use of a small number of elite genotypes in Brazilian breeding program further reduced the genetic variability, generate extensive LD and probably increase the haplotype block size. These results are in agreement with results of USDA soybean collection, mainly with accessions of north American, when compared with wild and landraces accessions. We constructed a small haplotype block maps (941 blocks), which may be useful for association studies aimed at the identification of genes controlling traits of economic importance in soybean.


Haplotypes SNP Coancestry Self-pollinated Soybean germplasm 



Deviance information criterion


Linkage disequilibrium


Minor allele frequency


Markov Chain Monte Carlo


Quantitative trait loci


Single nucleotide polymorphism

Supplementary material

10681_2017_1966_MOESM1_ESM.docx (56 kb)
Supplementary material 1 (DOCX 56 kb)


  1. Akond M, Liu S, Schoener L, Anderson JA, Kantartzi SK, Meksem K, Song Q, Wang D, Wen Z, Lightfoot DA, Kassem MA (2013) A SNP-based genetic linkage map of soybean using the SoySNP6K Illumina Infinium BeadChip genotyping array. J Plant Genome Sci 1(3):80–89. doi: 10.5147/jpgs.2013.0090 Google Scholar
  2. Bandillo N, Jarquin D, Song Q, Nelson R, Cregan P, Specht J, Lorenz A (2015) A population structure and genome-wide association analysis on the USDA soybean germplasm collection. Plant Genome 8(3):1–13. doi: 10.3835/plantgenome2015.04.0024 CrossRefGoogle Scholar
  3. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21(2):263–265. doi: 10.1093/bioinformatics/bth457 CrossRefPubMedGoogle Scholar
  4. Bastien M, Sonah H, Belzile F (2014) Genome wide association mapping of sclerotinia sclerotiorum resistance in soybean with a genotyping-by-sequencing approach. Plant Genome 7(1):1–13. doi: 10.3835/plantgenome2013.10.0030 CrossRefGoogle Scholar
  5. Carter TE, Nelson R, Sneller CH, Cui Z (2004) Genetic diversity in soybean. In: Boerma HR, Specht JE (eds) Soybeans: improvement, production and uses. Am Soc Agron, MadisonGoogle Scholar
  6. Contreras-Soto RI, Mora F, Oliveira MAR, Higashi W, Scapim CA, Schuster I (2017) A genome-wide association study for agronomic traits in soybean using SNP markers and SNP-based haplotype analysis. PLoS ONE e0171105Google Scholar
  7. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567. doi: 10.1111/j.1755-0998.2010.02847.x CrossRefPubMedGoogle Scholar
  8. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164(4):1567–1587PubMedPubMedCentralGoogle Scholar
  9. Flint-Garcia S, Thornsberry JM, Bukler ES (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357–374. doi: 10.1146/annurev.arplant.54.031902.134907 CrossRefPubMedGoogle Scholar
  10. Fujita R, Ohara M, Okazakia K, Shimamoto Y (1997) The extent of natural crosspollination in wild soybean (Glycine soja). J Hered 88(2):124–128. doi: 10.1093/oxfordjournals.jhered.a023070 CrossRefGoogle Scholar
  11. Gai JY, Xu DH, Gao Z et al (2000) Studies on the evolutionary relationship among eco-types of G. max and G. soja in China. Acta Agron Sinica 26:513–520Google Scholar
  12. Gao H, Williamson S, Bustamante CD (2007) A Markov Chain Monte Carlo approach for joint inference of population structure and inbreeding rates from multilocus genotype data. Genetics 176:1635–1651. doi: 10.1534/genetics.107.072371 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Gizlice Z, Carter TE, Burton JW (1994) Genetic base for North American public soybean cultivars released between 1947 and 1988. Crop Sci 34(95):1143–1151. doi: 10.2135/cropsci1994.0011183X003400050001x CrossRefGoogle Scholar
  14. Gore MA, Chia JM, Elshire RJ, Sun Q, Ersoz ES, Hurwitz BL, Peiffer JA, McMullen MD, Grills GS, Ross-Ibarra J et al (2009) A first-generation haplotype map of maize. Science 326:1115–1117. doi: 10.1126/science.1177837 CrossRefPubMedGoogle Scholar
  15. Goudet J (2005) HIERFSTAT, a package for R to compute and test hierarchical F-statistics. Mol Ecol Notes 5:184–186CrossRefGoogle Scholar
  16. Haun WJ, Hyten DL, Xu WW, Gerhardt DJ, Albert TJ, Richmond T, Jeddeloh JA, Jia G, Springer NM, Vance CV, Stupar RM (2011) The composition and origins of genomic variation among individuals of the soybean reference cultivar Williams 82. Plant Physiol 155:645–655. doi: 10.1104/pp.110.166736 CrossRefPubMedGoogle Scholar
  17. Hill WG, Weir BS (1988) Variances and covariances of squared linkage disequilibria in finite populations. Theor Popul Biol 33:54–78CrossRefPubMedGoogle Scholar
  18. Hiromoto DM, Vello NA (1986) The genetic base of Brazilian soybean (Glycine max (L.) Merrill) cultivars. Brazil J Genet 9:295–306Google Scholar
  19. Hymowitz T, Kaizuma N (1981) Soybean seed protein electrophoresis profiles from 15 Asian countries or regions: hypotheses on paths of dissemination of soybeans from China. Econ Bot 35(1):10–23. doi: 10.1007/BF02859210 CrossRefGoogle Scholar
  20. Hyten DL, Song Q, Zhu Y, Choi IY, Nelson RL et al (2006) Impacts of genetic bottlenecks on soybean genome diversity. Proc Natl Acad Sci USA 103:16666–16671. doi: 10.1073/pnas.0604379103 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hyten DL, Choi IY, Song Q et al (2007) Highly variable patterns of linkage disequilibrium in multiple soybean populations. Genetics 175:1937–1944. doi: 10.1534/genetics.106.069740 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hyten DL, Cannon SB, Song Q, Weeks N, Fickus EW, Shoemaker RC, Specht JE, Farmer AD, Maya GD, Cregan PB (2010) High-throughput SNP discovery through deep resequencing of a reduced representation library to anchor and orient scaffolds in the soybean whole genome sequence. BMC Genomics 15:38. doi: 10.1186/1471-2164-11-38 CrossRefGoogle Scholar
  23. Kim MY, Lee S, Van K, Kim TH, Jeong SC, Choi IY et al (2010) Whole-genome sequencing and intensive analysis of the undomesticated soybean (Glycine soja Sieb. and Zucc.) genome. PNAS 107(51):22032–22037. doi: 10.1073/pnas.1009526107
  24. Kim YH, Park HM, Hwang TY, Lee SK, Choi MS, Jho S et al (2014) Variation block-based genomics method for crop plants. BMC Genomics 15(1):477. doi: 10.1186/1471-2164-15-477 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Lam HM, Xu X, Liu X, Chen W, Yang G, Wong FL, Li MW, He W, Qin N, Wang B, Li J, Jian M, Wang J, Shao G, Wang J, Suna SS, Zhang G (2010) Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet 42:1053–1059. doi: 10.1038/ng.715 CrossRefPubMedGoogle Scholar
  26. Lee S, Freewalt KR, McHale LK, Song Q, Jun TH, Michel AP, Dorrance AE, Mian MAR (2015a) A high-resolution genetic linkage map of soybean based on 357 recombinant inbred lines genotyped with BARCSoySNP6K. Mol Breed 35:58. doi: 10.1007/s11032-015-0209-5 CrossRefGoogle Scholar
  27. Lee YG, Jeong N, Kim JH, Lee K, Kim KH, Pirani A, Ha BK, Kang ST, Park BS, Moon JK, Kim N, Jeong SC (2015b) Development, validation and genetic analysis of a large soybean SNP genotyping array. Plant J 81(4):625–636CrossRefPubMedGoogle Scholar
  28. Mamidi S, Chikara S, Goos RJ, Hyten DL, Annam D et al (2011) Genome-wide association analysis identifies candidate genes associated with iron deficiency chlorosis in soybean. Plant Genome 4:154–164. doi: 10.3835/plantgenome2011.04.0011 CrossRefGoogle Scholar
  29. Mamidi S, Lee RK, Goos JR, McClean PE (2014) Genome-Wide Association studies identifies seven major regions responsible for iron deficiency chlorosis in soybean (Glycine max). PLoS ONE 9:e107469. doi: 10.1371/journal.pone.0107469 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Nordborg M (2000) Linkage disequilibrium, gene trees and selfing: an ancestral recombination graph with partial self-fertilization. Genetics 154:923–929PubMedPubMedCentralGoogle Scholar
  31. Nordborg M, Donnelly P (1997) The coalescent process with selfing. Genetics 146(3):1185–1195Google Scholar
  32. Priolli RHG, Campos JB, Stabellini NS, Pinheiro JB, Vello NA (2014) Association mapping of oil content and fatty acid components in soybean. Euphytica 203:83–96. doi: 10.1007/s10681-014-1264-4 CrossRefGoogle Scholar
  33. Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt SR, Doebley J, Kresovich S, Goodman MM, Buckler ES (2001) Structure of linkage disequilibrium and phenotypic associations in the maize genome. PNAS 98:11479–11484. doi: 10.1073/pnas.201394398 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Reynolds J, Weir BS, Cockerham CC (1983) Estimation of the coancestry coefficient: basis for a short-term genetic distance. Genetics 105:767–779PubMedPubMedCentralGoogle Scholar
  35. Schmutz J, Cannon SB, Schlueter J, Ma J et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183. doi: 10.1038/nature08670 CrossRefPubMedGoogle Scholar
  36. Song Q, Hyten DL, Jia G, Quigley CV, Fickus EW et al (2013) Development and evaluation of SoySNP50K, a high-density genotyping array for soybean. PLoS ONE 8:e54985. doi: 10.1371/journal.pone.0054985 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Song Q, Hyten DL, Jia G, Quigley CV, Fickus EW, Nelson RL, Cregan PB (2015) Fingerprinting soybean germplasm and its utility in genomic research. G3, Genes/Genomes/Genetics 5(9):1–17. doi: 10.1534/g3.115.019000 Google Scholar
  38. Soto-Cerda B, Diederichsen A, Ragupathya R, Cloutier S (2013) Genetic characterization of a core collection of flax (Linum usitatissimum L.) suitable for association mapping studies and evidence of divergent selection between fiber and linseed types. BMC Plant Biol 13:78. doi: 10.1186/1471-2229-13-78 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Vigouroux Y, McMullen M, Hittinger CT, Houchins K, Schulz L, Kresovich S, Matsuoka Y, Doebley J (2002) Identifying genes of agronomic importance in maize by screening microsatellites for evidence of selection during domestication. Proc Natl Acad Sci USA 99:9650–9655. doi: 10.1073/pnas.112324299 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Villela OT, Unêda-Trevisoli SH, Da Silva FM, Bárbaro LS, Di Mauro AO (2014) Genetic divergence of roundup ready (RR) soybean cultivars estimated by phenotypic characteristics and molecular markers. Afr J Biotech 13:2613–2625. doi: 10.5897/AJB2014.13661 CrossRefGoogle Scholar
  41. Vuong TD, Sonah H, Meinhardt CG, Deshmukh R, Kadam S, Nelson RL, Shannon JG, Nguyen HT (2015) Genetic architecture of cyst nematode resistance revealed by genome-wide association study in soybean. BMC Genomics 16:593. doi: 10.1186/s12864-015-1811-y CrossRefPubMedPubMedCentralGoogle Scholar
  42. Wang J, Chu S, Zhang H, Zhu Y, Cheng H, Yu D (2016) Development and application of a novel genome-wide SNP array reveals domestication history in soybean. Sci Rep 9(6):20728CrossRefGoogle Scholar
  43. Wen Z, Boyse JF, Song Q, Cregan PB, Wang D (2015) Genomic consequences of selection and genome-wide association mapping in soybean. BMC Genomics 16:671. doi: 10.1186/s12864-015-1872-y CrossRefPubMedPubMedCentralGoogle Scholar
  44. Wysmierski PT, Vello NA (2013) The genetic base of Brazilian soybean cultivars: evolution over time and breeding implications. Genet Mol Biol 36:547–555. doi: 10.1590/S1415-47572013005000041 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Xu DH, Gai JY (2003) Genetic diversity of wild and cultivated soybeans growing in China revealed by RAPD analysis. Plant Breed 122:503–506. doi: 10.1046/j.0179-9541.2003.00911.x CrossRefGoogle Scholar
  46. Xu DH, Abe J, Gai JY, Shimamoto Y (2002) Diversity of chloroplast DNA SSRs in wild and cultivated soybeans: evidence for multiple origins of cultivated soybean. Theor Appl Genet 105:645–653. doi: 10.1007/s00122-002-0972-7 CrossRefPubMedGoogle Scholar
  47. Zhou Z, Jiang Y, Wang Z, Gou Z et al (2015) Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol 33(4):408–414. doi: 10.1038/nbt.3096 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Departamento de AgronomiaUniversidade Estadual de MaringáMaringáBrazil
  2. 2.Instituto de Ciencias AgronómicasUniversidad de O’HigginsRancaguaChile
  3. 3.Centro de Estudios Avanzados en Fruticultura (CEAF)RengoChile
  4. 4.Departamento de agronomiaCentro Universitário Dinâmica das CataratasFoz Do IguaçuBrazil
  5. 5.Cooperativa Central de Pesquisa Agrícola (COODETEC)CascavelBrazil
  6. 6.Dow AgrosciencesCravinhosBrazil

Personalised recommendations