, 213:186 | Cite as

Characterization of common bean wild populations for their in situ conservation in Northwestern Argentina

  • Mariana J. Ferreyra
  • M. Carmen Menéndez-Sevillano
  • Yanina Noe
  • Luis R. Ibarra
  • Antonio M. De Ron
Part of the following topical collections:
  1. Plant Breeding: the Art of Bringing Science to Life. Highlights of the 20th EUCARPIA General Congress, Zurich, Switzerland, 29 August–1 September 2016


In situ conservation of wild species is a method of conservation that allows keeping populations in their natural environments, and set the strategies for maintaining the natural populations. The Active Bank of Northwestern Argentina (BANOA) is in charge of the in situ conservation of wild populations of common bean (Phaseolus vulgaris L.) in Northwestern Argentina (NOA), and has an ex situ collection of 401 landraces and 221 wild accessions from the NOA. We evaluated the phenotypic diversity of 68 common bean wild populations from the NOA both in protected and unprotected areas, finding a moderate variation among them. Ten phenotypic reproductive characteristics related to pod and seed displayed significant differences in the analysis of variance; these traits together with the seed weight were the basis for the multivariate analysis. The cluster analysis ordered the populations in 12 groups but trends in geographical distribution or phenotypical variation were not recognized. For the conservation in situ of the wild bean populations, their diversity should be considered. Two types of populations can be highlighted: (i) candidates for in situ conservation in order to preserve the novel variation generated by convergence with cultivated sympatric germplasm (populations 433, 437, 471, 509, 513 and 517) and (ii) those whose phenotype represents clearly the wild status and should be preserved in situ as such in their current status (populations 480, 495, 496, 525 and 533).


Breeding Domestication Genetic diversity Germplasm Phaseolus vulgaris 



The authors thank the financial support of the project i-COOP 2016SU0004 of the Spanish National Research Council (CSIC, Spain) and National Agricultural Technology Institute (INTA, Argentina) research projects.


  1. Acosta-Gallegos JA, Quintero C, Vargas J et al (1998) A new variant of arcelin in wild common bean, Phaseolus vulgaris L., from southern Mexico. Genet Resour Crop Evol 45:235–242CrossRefGoogle Scholar
  2. Angioi SA, Rau D, Attene G et al (2010) Beans in Europe: origin and structure of the European landraces of Phaseolus vulgaris L. Theor Appl Genet 121:829–843CrossRefPubMedGoogle Scholar
  3. Beebe S, Rengifo J, Gaitan E et al (2001) Diversity and origin of Andean landraces of common bean. Crop Sci 41:854–862CrossRefGoogle Scholar
  4. Bellucci E, Bitocchi E, Rau D et al (2014) Genomics of origin, domestication and evolution of Phaseolus vulgaris. In: Tuberosa R, Graner A, Frison E (eds) Genomics of plant genetic resources. Springer, Dordrecht, pp 483–507CrossRefGoogle Scholar
  5. Bitocchi E, Nanni L, Bellucci E et al (2012) Mesoamerican origin of the common bean (Phaseolus vulgaris L.) is revealed by sequence data. PNAS 109:E788–E796CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bitocchi E, Bellucci E, Giardini A et al (2013) Molecular analysis of the parallel domestication of the common bean (Phaseolus vulgaris) in Mesoamerica and the Andes. New Phytol 197:300–313CrossRefPubMedGoogle Scholar
  7. Brücher H (1988) The wild ancestor of Phaseolus vulgaris in South America. In: Gepts P (ed) Genetic resources of Phaseolus beans. Kluwer Academic Publishers, Dordrecht, pp 185–214CrossRefGoogle Scholar
  8. Brücher B, Brücher H (1976) The South American wild bean (Phaseolus aborigineus Burk.) as ancestor of the common bean. Econ Bot 30:257–272CrossRefGoogle Scholar
  9. Burkart A (1945) Presentación de porotos de adorno de Bolivia. Physis XX 55:56Google Scholar
  10. Cabrera AL (1976) Regiones fitogeográficas Argentinas. En Enciclopedia Argentina de Agricultura y jardinería. Segunda edición Tomo II. Fascículo 1. Editorial Acme S.A.C.I. 85 ppGoogle Scholar
  11. Cattan-Toupance I, Michalakis Y, Neema C (1998) Genetic structure of wild bean populations in their South-Andean centre of origin. Theor Appl Genet 96:844–851CrossRefGoogle Scholar
  12. CIAT (1984) Morfología de la planta de fríjol común (Phaseolus vulgaris L.). Guía de estudio. CIAT (Centro Internacional de Agricultura Tropical), CaliGoogle Scholar
  13. De la Fuente M, González AM, De Ron AM et al (2013) Patterns of genetic diversity in the Andean gene pool of common bean reveal a candidate domestication gene. Mol Breed 31:501–516CrossRefGoogle Scholar
  14. De Ron AM, Rodiño AP, Menéndez-Sevillano MC et al (1999) Variation in wild and primitive Andean bean varieties under European conditions. Annu Rept Bean Improv Coop 42:95–96Google Scholar
  15. De Ron AM, Menéndez-Sevillano MC, Santalla M (2004) Variation in primitive landraces of common bean (Phaseolus vulgaris L.) from Argentina. Genet Resour Crop Evol 51:883–894CrossRefGoogle Scholar
  16. De Ron AM, Papa R, Bitocchi E et al (2015) Common bean. In: De Ron AM (ed) Grain legumes. Handbook of plant breeding. Springer, New York, pp 1–36Google Scholar
  17. Debouck D (1989) Early beans (P. vulgaris and P. lunatus) domesticated for their aesthetic value? Annu Rept Bean Improv Coop 32:62–63Google Scholar
  18. Debouck D (1990) Wild beans as a food resource in the Andes. Annu Rept Bean Improv Coop 33:102–103Google Scholar
  19. Debouck DG, Tohme J (1989) Implications for bean breeders of studies on the origins of common bean, Phaseolus vulgaris L. In: Beebe S (ed) Current topics in breeding of common bean, working document 47. CIAT (Centro Internacional de Agricultura Tropical), Cali, pp 3–42Google Scholar
  20. Galván MZ, Menéndez-Sevillano M, De Ron AM et al (2006) Genetic diversity among wild common beans from Northwestern Argentina based on morphoagronomic and RAPD data. Genet Resour Crop Evol 53:891–900CrossRefGoogle Scholar
  21. Gepts P, Debouck DG (1991) Origin, domestication and evolution of the common bean (Phaseolus vulgaris L.). In: van Schoonhoven A, Voysest O (eds) Common beans: research for crop improvement. Centro Internacional de Agricultura Tropical (CIAT), Cali, pp 7–53Google Scholar
  22. Gepts P, Osborn T, Rashka K et al (1986) Phaseolin-protein variability in wild forms and landraces of the common bean (Phaseolus vulgaris) evidence for multiple centers of domestication. Econ Bot 40:451–468CrossRefGoogle Scholar
  23. Gepts P, González A, Papa R et al (2000) Outcrossing in Mexican wild and domesticated populations of common bean. Annu Rept Bean Improv Coop 43:25–26Google Scholar
  24. Gioia T, Logozzo G, Attene G et al (2013) Evidence for introduction bottleneck and extensive inter-gene pool (Mesoamerica × Andes) hybridization in the European common bean (Phaseolus vulgaris L.) germplasm. PLoS ONE 8:e75974CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hammer K (1984) The domestication syndrome. Kulturpflanze 32:11–34CrossRefGoogle Scholar
  26. Koenig RL, Gepts P (1989) Allozyme diversity in Phaseolus vulgaris further evidence for two major centers of genetic diversity. Theor Appl Genet 78:809–817CrossRefPubMedGoogle Scholar
  27. Koenig R, Singh SP, Gepts P (1990) Novel phaseolin types in wild and cultivated common bean (Phaseolus vulgaris, Fabaceae). Econ Bot 44:50–60CrossRefGoogle Scholar
  28. Koinange EMK, Singh SP, Gepts P (1996) Genetic control of the domestication syndrome in common bean. Crop Sci 36:1037–1045CrossRefGoogle Scholar
  29. Kornegay J, White JW, Ortíz de la Cruz O (1992) Growth habit and gene pool effects on inheritance of yield in common bean. Euphytica 62:171–180CrossRefGoogle Scholar
  30. Ladizinsky G (1985) Founder effect in crop-plant evolution. Econ Bot 39:191–199CrossRefGoogle Scholar
  31. Menéndez Sevillano MC (2002) Estudio y conservación del germoplasma silvestre y primitivo de Phaseolus vulgaris L. en el Noroeste de Argentina. Dissertation. University of Santiago de CompostelaGoogle Scholar
  32. Mumba LE, Galwey NW (1999) Compatibility between wild and cultivated common bean (Phaseolus vulgaris L.) genotypes of the Mesoamerican and Andean gene pools: evidence from the inheritance of quantitative characters. Euphytica 108:105–119CrossRefGoogle Scholar
  33. Puerta-Romero J (1961) Variedades de judías cultivadas en España. Nueva clasificación de la especie Phaseolus vulgaris (L. Ex p.) Savi. Monografías INIA 11, MadridGoogle Scholar
  34. Quiroga G, González AM, Yuste-Lisbona F, et al (2015) Identification and phylogenetic analysis of FT genes in common bean (Phaseolus vulgaris L.). Book of Abstracts, In: Proceedings of the EUCARPIA international symposium on protein crops, pp. 158Google Scholar
  35. Rodriguez M, Rau D, Bitocchi E et al (2016) Landscape genetics, adaptive diversity and population structure in Phaseolus vulgaris. New Phytol 209:1781–1794CrossRefPubMedGoogle Scholar
  36. Santalla M, Rodiño AP, De Ron AM (2002) Allozyme evidence supporting southwestern Europe as a secondary center of genetic diversity for common bean. Theor Appl Genet 104:934–944CrossRefPubMedGoogle Scholar
  37. Santalla M, Menéndez-Sevillano MC, Monteagudo AB et al (2004) Genetic diversity of Argentinean common bean and its evolution during domestication. Euphytica 135:75–87CrossRefGoogle Scholar
  38. Schmutz J, McClean PE, Mamidi S et al (2014) A reference genome for common bean and genome-wide analysis of dual domestications. Nat Genet 46:707–713CrossRefPubMedGoogle Scholar
  39. Singh SP (2001) Broadening the genetic base of common bean cultivars: a review. Crop Sci 41:1659–1675CrossRefGoogle Scholar
  40. Singh SP, Gepts P, Debouck DG (1991) Races of common bean (Phaseolus vulgaris Fabaceae). Econ Bot 45:379–396CrossRefGoogle Scholar
  41. Singh SP, Molina A, Gepts P (1995) Potential of wild common bean for seed yield improvement of cultivars in the tropics. Can J Plant Sci 75:807–813CrossRefGoogle Scholar
  42. Smartt J (1988) Morphological, physiological and biochemical changes in Phaseolus beans under domestication. In: Gepts P (ed) Genetics resources of Phaseolus beans: their maintenance, domestication, evolution and utilization. Kluwer, Dordrecht, pp 543–560Google Scholar
  43. Steel RGD, Torrie JH, Dickey DA (1997) Principles and procedures of statistics: a biometrical approach, 3rd edn. McGraw-Hill, New YorkGoogle Scholar
  44. Tohme J, Gonzalez DO, Beebe S et al (1996) AFLP Analysis of gene pools of a wild bean core collection. Crop Sci 36:1375–1384CrossRefGoogle Scholar
  45. van Schoonhoven A, Cardona C (1982) Low levels of resistance to the Mexican bean weevil in dry beans. J Econ Entomol 75:567–569CrossRefGoogle Scholar
  46. van Schoonhoven A, Cardona C, Valor J (1983) Resistance to the bean weevil and the Mexican bean weevil (Coleoptera: bruchidae) in non cultivated common bean accessions. J Econ Entomol 76:1255–1259CrossRefGoogle Scholar
  47. Vlasova A, Capella-Gutiérrez S, Rendón-Anaya M et al (2016) Genome and transcriptome analysis of the Mesoamerican common bean and the role of gene duplications in establishing tissue and temporal specialization of genes. Genome Biol 17:32CrossRefPubMedPubMedCentralGoogle Scholar
  48. White JW, Kornegay J, Castillo J et al (1992) Effect of growth habit on yield of large-seeded bush cultivars of common bean. Field Crops Res 29:151–161CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Active Bank of Northwestern Argentina (BANOA)EEA Salta, National Agricultural Technology Institute (INTA)SaltaArgentina
  2. 2.Teledetection LaboratoryEEA Salta, National Agricultural Technology Institute (INTA)SaltaArgentina
  3. 3.Biology of Agrosystems, Misión Biológica de Galicia (MBG)Spanish National Research Council (CSIC)PontevedraSpain

Personalised recommendations