Skip to main content

Genome-wide association mapping and genome-wide prediction of anther extrusion in CIMMYT spring wheat

Abstract

Hybrid breeding is an efficient system to break the yield barriers in many crops. For an effective hybrid seed production, a pool of male parental lines with appropriate anther extrusion (AE) ensuring pollen shedding outside the florets for efficient cross fertilization is required. We investigated the genetic architecture of AE using genome-wide association studies (GWAS) and examined the potential of genome-wide prediction (GP) for AE based on a panel of 309 CIMMYT spring wheat lines evaluated in field trials and fingerprinted with genotyping-by-sequencing. The broad-sense heritability of AE was 0.64. Genotypic data consisted of 14,921 polymorphic markers. GWAS discovered no significant marker at FDR (P) ≤ 0.20, suggesting that this trait is controlled by many small effect loci. Average accuracy of ridge-regression best linear unbiased prediction was 0.62. We conclude that GP is a suitable method to select for AE, which is otherwise challenging to phenotype.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Boeven PH, Longin CFH, Leiser WL, Kollers S, Ebmeyer E, Würschum T (2016) Genetic architecture of male floral traits required for hybrid wheat breeding. Theor Appl Genet 129:2343–2357

    Article  PubMed  Google Scholar 

  2. Buerstmayr M, Buerstmayr H (2015) Comparative mapping of quantitative trait loci for Fusarium head blight resistance and anther retention in the winter wheat population Capo x Arina. Theor Appl Genet 128:1519–1530

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Desta ZA, Ortiz R (2014) Genomic selection: genome-wide prediction in plant improvement. Trends Plant Sci 19:592–601

    CAS  Article  PubMed  Google Scholar 

  4. Edae EA, Byrne PF, Haley SD, Lopes MS, Reynolds MP (2014) Genome-wide association mapping of yield and yield components of spring wheat under contrasting moisture regimes. Theor Appl Genet 127:791–807

    CAS  Article  PubMed  Google Scholar 

  5. Graham S, Browne RA (2009) Anther extrusion and Fusarium head blight resistance in European wheat. J Phytopathol 157:580–582

    Article  Google Scholar 

  6. Hamblin MT, Buckler ES, Jannink J-L (2011) Population genetics of genomics-based crop improvement methods. Trends Genet 27:98–106

    CAS  Article  PubMed  Google Scholar 

  7. He S, Zhao Y, Mette MF, Bothe R, Ebmeyer E, Sharbel TF, Reif JC, Jiang Y (2015) Prospects and limits of marker imputation in quantitative genetic studies in European elite wheat (Triticum aestivum L.). BMC Genom 16:168

    Article  Google Scholar 

  8. Howie BN, Donnelly P, Marchini J (2009) A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet 5:e1000529

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jiang Y, Zhao Y, Rodemann B, Plieske J, Kollers S, Korzun V, Ebmeyer E, Argillier O, Hinze M, Ling J, Röder MS, Ganal MW, Mette MF, Reif JC (2015) Potential and limits to unravel the genetic architecture and predict the variation of Fusarium head blight resistance in European winter wheat (Triticum aestivum L.). Heredity 114:318–326

    CAS  Article  PubMed  Google Scholar 

  10. Jordan KW, Wang S, Lun Y, Gardiner L-J, MacLachlan R, Hucl P, Wiebe K, Wong D, Forrest KL, Sharpe AG, Sidebottom CHD, Hall N, Toomajian C, Close T, Dubcovsky J, Akhunova A, Talbert L, Bansal UK, Bariana HS, Hayden MJ, Pozniak C, Jeddeloh JA, Hall A, Akhunov E (2015) A haplotype map of allohexaploid wheat reveals distinct patterns of selection on homoeologous genomes. Genome Biol 16:48

    Article  PubMed  PubMed Central  Google Scholar 

  11. Langer SM, Longin CFH, Würschum T (2014) Phenotypic evaluation of floral and flowering traits with relevance for hybrid breeding in wheat (Triticum aestivum L.). Plant Breeding 133:433–441

    Article  Google Scholar 

  12. Liu W, Maurer H, Reif J, Melchinger A, Utz H, Tucker M, Ranc N, Della Porta G, Würschum T (2013) Optimum design of family structure and allocation of resources in association mapping with lines from multiple crosses. Heredity 110:71–79

    CAS  Article  PubMed  Google Scholar 

  13. Longin CFH, Mühleisen J, Maurer HP, Zhang HL, Gowda M, Reif JC (2012) Hybrid breeding in autogamous cereals. Theor Appl Genet 125:1087–1096

    Article  PubMed  Google Scholar 

  14. Lu QX, Lillemo M, Skinnes H, He XY, Shi JR, Ji F, Dong YH, Bjørnstad Å (2013) Anther extrusion and plant height are associated with Type I resistance to Fusarium head blight in bread wheat line ‘Shanghai-3/Catbird’. Theor Appl Genet 126:317–334

    CAS  Article  PubMed  Google Scholar 

  15. Meuwissen T, Hayes B, Goddard M (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Mühleisen J, Piepho HP, Maurer HP, Longin CFH, Reif JC (2014) Yield stability of hybrids versus lines in wheat, barley, and triticale. Theor Appl Genet 127:309–316

    Article  PubMed  Google Scholar 

  17. Muqaddasi QH, Lohwasser U, Nagel M, Börner A, Pillen K, Röder MS (2016) Genome-wide association mapping of anther extrusion in hexaploid spring wheat. PLoS ONE 11:e0155494

    Article  PubMed  PubMed Central  Google Scholar 

  18. Nair SK, Wang N, Turuspekov Y, Pourkheirandish M, Sinsuwongwat S, Chen G, Sameri M, Tagiri A, Honda I, Watanabe Y, Kanamori H, Wicker T, Stein N, Nagamura Y, Matsumoto T, Komatsuda T(2010) Cleistogamous flowering in barley arises from the suppression of microRNA-guided HvAP2 mRNA cleavage. Proc Natl Acad Sci 107:490–495

    CAS  Article  PubMed  Google Scholar 

  19. Nakaya A, Isobe SN (2012) Will genomic selection be a practical method for plant breeding? Ann Bot mcs 110:1303–1316

    Article  Google Scholar 

  20. Ning S, Wang N, Sakuma S, Pourkheirandish M, Wu J, Matsumoto T, Koba T, Komatsuda T (2013) Structure, transcription and post-transcriptional regulation of the bread wheat orthologs of the barley cleistogamy gene Cly1. Theor Appl Genet 126:1273–1283

    CAS  Article  PubMed  Google Scholar 

  21. Poland J, Endelman J, Dawson J, Rutkoski J, Wu SY, Manes Y, Dreisigacker S, Crossa J, Sanchez-Villeda H, Sorrells M, Jannink JL (2012a) Genomic selection in wheat breeding using genotyping-by-sequencing. Plant Genome 5:103–113

    CAS  Article  Google Scholar 

  22. Poland JA, Brown PJ, Sorrells ME, Jannink J-L (2012b) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE 7:e32253

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Risch N, Merikangas K (1996) The future of genetic studies of complex human diseases. Science 273:1516–1517

    CAS  Article  PubMed  Google Scholar 

  24. Rogers JS (1972) Measures of genetic similarity and genetic distance. Stud Genet 7:145–153

    Google Scholar 

  25. Schnable PS, Springer NM (2013) Progress toward understanding heterosis in crop plants. Annu Rev Plant Biol 64:71–88

    CAS  Article  PubMed  Google Scholar 

  26. Singh SK, Arun B, Joshi AK (2007) Comparative evaluation of exotic and adapted germplasm of spring wheat for floral characteristics in the Indo-Gangetic Plains of northern India. Plant Breed 126:559–564

    Article  Google Scholar 

  27. Skinnes H, Semagn K, Tarkegne Y, Marøy AG, Bjørnstad Å (2010) The inheritance of anther extrusion in hexaploid wheat and its relationship to Fusarium head blight resistance and deoxynivalenol content. Plant Breed 129:149–155

    CAS  Article  Google Scholar 

  28. Somers DJ, Banks T, DePauw R, Fox S, Clarke J, Pozniak C, McCartney C (2007) Genome-wide linkage disequilibrium analysis in bread wheat and durum wheat. Genome 50:557–567

    CAS  Article  PubMed  Google Scholar 

  29. Spindel J, Begum H, Akdemir D, Virk P, Collard B, Redoña E, Atlin G, Jannink JL, McCouch SR (2015) Genomic selection and association mapping in rice (Oryza sativa): effect of trait Genetic architecture, training population composition, marker number and statistical model on accuracy of rice genomic selection in elite, tropical rice breeding lines. Plos Genet 11:e1004982

    Article  PubMed  PubMed Central  Google Scholar 

  30. Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci 100:9440–9445

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Team RC (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2015. http. www R-project org

  32. Weir BS (1996) Genetic data analysis II. Sinauer Assoc. Inc., Sunderland, MA, USA

  33. Whittaker JC, Thompson R, Denham MC (2000) Marker-assisted selection using ridge regression. Genet Res 75:249–252

    CAS  Article  PubMed  Google Scholar 

  34. Yu JM, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    CAS  Article  PubMed  Google Scholar 

  35. Zhao Y, Li Z, Liu G, Jiang Y, Maurer HP, Würschum T, Mock H-P, Matros A, Ebmeyer E, Schachschneider R, Kazman E, Schacht J, Gowda M, Longin CFH, Reif JC (2015) Genome-based establishment of a high-yielding heterotic pattern for hybrid wheat breeding. Proc Natl Acad Sci 112:15624–15629

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhu CS, Gore M, Buckler ES, Yu JM (2008) Status and prospects of association mapping in plants. Plant Genome-Us 1:5–20

    CAS  Article  Google Scholar 

  37. Zondervan KT, Cardon LR (2004) The complex interplay among factors that influence allelic association. Nat Rev Genet 5:89–100

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

The first author thanks DAAD (Deutscher Akademischer Austauschdienst) for supporting his Ph.D. candidature. The authors are grateful to Sang He for advices in the statistical analysis of the data. This study was funded by the German Federal Ministry for Economic Cooperation and Development (BMZ) project number 12.1433.7-001.1.

Author Contributions

Conceived and designed the experiments: JCR, SD, MSR. Performed the experiments: SD, BRB. Analysed the data: ZL, QHM. Wrote the paper: QHM, MSR, JCR.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Quddoos H. Muqaddasi.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Muqaddasi, Q.H., Reif, J.C., Li, Z. et al. Genome-wide association mapping and genome-wide prediction of anther extrusion in CIMMYT spring wheat. Euphytica 213, 73 (2017). https://doi.org/10.1007/s10681-017-1863-y

Download citation

Keywords

  • Anther extrusion
  • Hybrid wheat
  • Marker-trait associations
  • QTL
  • Genomic prediction