Skip to main content
Log in

Genome-wide association study of yield components and fibre quality traits in a cotton germplasm diversity panel

Euphytica Aims and scope Submit manuscript

Abstract

A genome-wide association study (GWAS) was conducted on a diversity panel of 103 cotton accessions over three seasons to determine genetic contributions to a range of cotton yield components including fibre quality, plant architecture and stomatal conductance traits. The accessions covered breeding lines, released cultivars and some obsolete cultivars that contributed significantly to modern breeding pools. They were genotyped with Illumina’s CottonSNP63 K single nucleotide polymorphism (SNP) assay. Broad-sense heritability was low for yield component traits (\(h_{B}^{2}\) = 0.14–0.43), except for gin turnout and boll weight (\(h_{B}^{2}\)) = 0.74 and 0.59, respectively), and low to high for fibre quality traits (\(h_{B}^{2}\) = 0.26–0.89). Population structure analysis revealed extensive admixture and cryptic relatedness amongst the accessions. Genome-wide linkage disequilibrium (LD) analyses showed LD decayed, on average, within a physical distance of 5 Mbp and reduced to 2 Mbp at r 2 ≥ 0.2, suggesting that few markers are necessary for association mapping in cotton. A mixed linear model accounting for population structure and cryptic relatedness identified 17 and 50 significant SNP associations for fibre length and micronaire, respectively. GWAS failed to detect significant associations in other traits, with the contribution of any single SNP to the phenotypic falling below 5%. This may be due to the low level of DNA polymorphism in cotton and/or insufficient resolution provided by the cotton SNP chip. Whole genome sequencing combined with whole genomic selection approaches that do not require prior knowledge about the effect or function of individual SNPs may be better suited than GWAS for trait dissection and prediction in cotton breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Abdalla AM, Reddy OUK, El-Zik KM, Pepper AE (2001) Genetic diversity and relationships of diploid and tetraploid cottons revealed using AFLP. Theor Appl Genet 102:222–229. doi:10.1007/s001220051639

    Article  CAS  Google Scholar 

  • Abdurakhmonov IY, Abdukarimov A (2008) Application of association mapping to understanding the genetic diversity of plant germplasm resources. Int J Plant Genome. doi:10.1155/2008/574927

    Google Scholar 

  • Abdurakhmonov IY, Saha S, Jenkins JN, Buriev Z, Shermatov SE, Scheffler BE, Pepper AE, Yu JZ, Kohel RJ, Abdukarimov A (2009) Linkage disequilibrium based association mapping of fiber quality traits in G. hirsutum L. variety germplasm. Genetica 136:401–417

    Article  PubMed  Google Scholar 

  • Aguago A, De Los Santos B, Gamane D, Garcia del Moral LF, Romero F (2010) Gene effects for cotton-fiber traits in cotton plant (Gossypium hirsutum L.) under Verticillium conditions. Field Crop Res 116:209–217

    Article  Google Scholar 

  • Ahmad M, Khan NU, Muhammad F, Khan SA (2011) Genetic potential and heritability studies for some polygenic traits in cotton (Gossypium hirsutum L.). Pak J Bot 43:1713–1718

    Google Scholar 

  • Alvarez-Castro JM, Carlborg O (2007) A unified model for functional and statistical epistasis and its application in quantitative trait loci analysis. Genetics 176:1151–1167

    Article  PubMed  PubMed Central  Google Scholar 

  • Atwell S, Huang YS, Vilhjalmsson BJ, Willems G, Horton M, Li Y, Meng D, Platt A, Tarone AM, Hu TT (2010) Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465:627–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Stat Soc B 57:289–300

    Google Scholar 

  • Bertini CH, Schuster I, Sediyama T, deBarros EG, Moreira MA (2006) Characterization and genetic diversity analysis of cotton cultivars using microsatellites. Genet Mol Bio 29:321–329

    Article  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Brubaker CL, Bourland FM, Wendel JF (1999) The origin and domestication of cotton. In: Smith CW, Cothren JT (eds) In Cotton: Origin, history, technology, and production. Wiley, New York, pp 3–32

    Google Scholar 

  • Butler DG, Cullis BR, Gilmour AR, Gogel BJ (2009) ASReml-R reference manual, release 3. Technical report. NSW Department of Primary Industries, p. 160

  • Cai C, Ye W, Zhang T, Guo W (2014) Association analysis of fiber quality traits and exploration of elite alleles in Upland cotton cultivars/accessions (Gossypium hirsutum L.). J Integr Plant Biol 56:51–62

    Article  CAS  PubMed  Google Scholar 

  • Campbell BT, Chee PW, Lubbers E, Bowman DT, Meredith WR, Johnson J, Fraser D (2011) Genetic improvement of the Pee Dee cotton germplasm col-lection following seventy years of plant breeding. Crop Sci 51:955–968

    Article  Google Scholar 

  • Chee PW, Campbell BT (2009) Bridging classical and molecular genetics of cotton fiber quality and development. In: Paterson AD (ed) Genetics and Genomics of Cotton. Springer, New York, pp 283–311

    Chapter  Google Scholar 

  • Chee P, Lubbers E, May O, Gannaway J, Paterson AH (2004) Changes in genetic diversity of the US Upland cotton. Beltwide Cotton Conference National Cotton Council, San Antonio

  • Clement JD, Constable GA, Stiller WN, Liu SM (2012) Negative associations still exist between yield and fibre quality in cotton breeding programs in Australia and USA. Field Crop Res 128:1–7

    Article  Google Scholar 

  • Clement JD, Constable GA, Walford SA (2014) Improving the precision in estimating cotton seed fibre density. Field Crops Res 160:77–80. doi:10.1016/j.fcr.2014.01.011

    Article  Google Scholar 

  • Constable GA, Thomson NJ, Reid PE (2001) Approaches utilized in breeding and development of cotton cultivars in Australia. In: Jenkins JN, Saha S (eds) Genetic improvement of cotton: emerging technologies. Science Publishers, Enfield, pp 1–15

    Google Scholar 

  • Cotton Research and Development Corporation (2014) Australian cotton production manual (G, Press edn. Cotton Research and Development Corporation, Narrabri

    Google Scholar 

  • Courtois B, Frouin J, Greco R, Bruschi G et al (2012) Genetic diversity and population structure in a European collection of rice. Crop Sci 52:1663–1675

    Article  Google Scholar 

  • Dent AE, Bridgett MV (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Fang DD, Hinze LL, Percy RG, Li P, Deng D, Thyssen G (2013) A microsatellite-based genome-wide analysis of genetic diversity and linkage disequilibrium in Upland cotton (Gossypium hirsutum L.) cultivars from major cotton-growing countries. Euphytica 191:391–401

    Article  CAS  Google Scholar 

  • Fang DD, Jenkins JN, Deng DD, McCarty JC, Li P, Wu J (2014) Quantitative trait loci analysis of fiber quality traits using a random-mated recombinant inbred population in Upland cotton (Gossypium hirsutum L.). BMC Genom 15:397

    Article  Google Scholar 

  • Gajardo HA, Wittkop B, Soto-Cerda B, Higgins EE, Parkin IAP, Snowden RJ, Iniguez-Luy FL (2015) Association mapping of seed quality traits in Brassica napus L. using GWAS and candidate QTL approaches. Mol Breed 35:143. doi:10.1007/s11032-015-0340-3

    Article  Google Scholar 

  • Gilmour AR, Gogel BJ, Cullis BR, Thompson R (2009) ASReml user guide release 3.0. VSN International Ltd, Hemel Hempstead, p 372

    Google Scholar 

  • Groves FE, Bourland FM (2010) Estimating seed surface area of cottonseed. J Cotton Sci 14:74–81

    Google Scholar 

  • Hamblin MT, Warburton ML (2007) Buckler ES (2007) Empirical comparison of simple sequence repeats and single nucleotide polymorphisms in assessment of maize diversity and relatedness. PLoS ONE 2:e1367

    Article  PubMed  PubMed Central  Google Scholar 

  • Herring AD, Auld DL, Ethridge MD, Hequet EF, Bechere E, Green CJ, Cantrell RG (2004) Inheritance of fiber quality and lint yield in a chemically mutated population of cotton. Euphytica 136:333–339

    Article  Google Scholar 

  • Hinze L, Fang D, Gore M, Scheffler B, Yu J, Frelichowski J, Percy R (2015) Molecular characterization of the Gossypium diversity reference set of the US national cotton germplasm collection. Theor Appl Genet 128:313–327

    Article  PubMed  Google Scholar 

  • Huang X, Han B (2014) Natural variations and genome-wide association studies in crop plants. Annu Rev Plant Biol 65:531–551

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Wei X, Sang T, Zhao Q, Feng Q et al (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42:961–967

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Zhao Y, Wei X, Li C, Wang A (2012) Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat Genet 44:32–39

    Article  Google Scholar 

  • Hufford MB, Xu X, van Heerwaarden J, Pyhajarvi T, Chia JM (2012) Comparative population genomics of maize domestication and improvement. Nat Genet 44:808–811

    Article  CAS  PubMed  Google Scholar 

  • Hulse-Kemp AM, Lemm J, Plieske J, Ashrafi H, Buyyarapu R, Fang DD et al (2015) Development of a 63 K SNP array for cotton and high-density mapping of intraspecific and interspecific populations of Gossypium spp. Genes Genomes Genet 5:1187–1209

    Google Scholar 

  • Kantartzi SK, Stewart JM (2008) Association analysis of fibre traits in Gossypium arboreum accessions. Plant Breed 127:173–179

    Article  Google Scholar 

  • Lacape J-M, Nguyen T-B, Courtois B, Belot J-L, Giband M, Gourlot J-P, Gawryziak G, Roques S, Hau B (2005) QTL analysis of cotton fiber quality using multiple × backcross generations. Crop Sci 45:123–140

    Article  CAS  Google Scholar 

  • Liu S, Cantrell RG, McCarty JC, Stewart JM (2000) Simple sequence repeat-based assessment of genetic diversity in cotton race stock accessions. Crop Sci 40:1459–1469

    Article  CAS  Google Scholar 

  • Liu KJ, Goodman M, Muse S, Smith JS, Buckler E, Doebley J (2003) Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites. Genetics 165:2117–2128

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu SM, Llewellyn DJ, Stiller WN, Jacobs J, Lacape JM, Constable GA (2011) Heritability and predicted selection response of yield components and fibre properties in an inter-specificderived RIL population of cotton. Euphytica 178:309–320

    Article  Google Scholar 

  • Liu SM, Constable GA, Reid PE, Stiller WN, Cullis BR (2013) The interaction between breeding and crop management in improved cotton yield. Field Crop Res 148:49–60

    Article  Google Scholar 

  • Liu SM, Constable GA, Cullis BR, Stiller WN, Reid PE (2015) Benefit of spatial analysis for furrow irrigated cotton breeding trials. Euphytica 201:253–264

    Article  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Associates Inc, Sunderland

    Google Scholar 

  • Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA et al (2009) Finding the missing heritability of complex diseases. Nature 461:747–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McRae AF, McEwan JC, Dodds KG, Wilson T, Crawford AM, Slate J (2002) Linkage disequilibrium in domestic sheep. Genetics 160:1113–1122

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mei H, Zhu X, Zhang T (2013) Favorable QTL alleles for yield and its components identified by association mapping in Chinese Upland cotton cultivars. PLoS ONE 8(12):e82193

    Article  PubMed  PubMed Central  Google Scholar 

  • Mei H, Ai N, Zhang X, Ning Z, Zhang T (2014) QTLs conferring FOV 7 resistance detected by linkage and association mapping in Upland cotton. Euphytica 197:237–249

    Article  Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morris GP, Ramu P, Deshpande SP, Hash CT, Shah T (2012) Population genomic and genomewide association studies of agroclimatic traits in sorghum. Proc Natl Acad Sci USA 110:453–458

    Article  PubMed  PubMed Central  Google Scholar 

  • Nelson RM, Pettersson ME, Carlborg O (2013) A century after Fisher: time for a new paradigm in quantitative genetics. Trends Genet 29:669–676

    Article  CAS  PubMed  Google Scholar 

  • Patel JD, Wright RJ, Auld D, Chandnani R, Goff VH, Ingles J, Pierce GJ, Torres MJ, Paterson AH (2014) Alleles conferring improved fiber quality from EMS mutagenesis of elite cotton genotypes. Theor Appl Genet 127:821–830

    Article  CAS  PubMed  Google Scholar 

  • Pfrender ME, Spitze K, Hicks J, Morgan K, Latta L, Lynch M (2000) Lack of concordance between genetic diversity estimates at the molecular and quantitative-trait levels. Conserv Genet 1:263–269

    Article  CAS  Google Scholar 

  • Price AL, Zaitlen NA, Reich D, Patterson N (2010) New approaches to population stratification in genome-wide association studies. Nature Rev Genet 11:459–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pritchard JK, Preworski M (2001) Linkage disequilibrium in humans: models and data. Am J Human Genet 69:1–14

    Article  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • R Development Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, (http://www.gbif.org/resource/81287)

  • Rafalski JA (2010) Association genetics in crop improvement. Curr Opin Plant Biol 13:174–180

    Article  CAS  PubMed  Google Scholar 

  • Robinson MR, Wray NR, Visscher PM (2014) Explaining additional genetic variation in complex traits. Trends Genet 30:124–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rungis D, Llewellyn DJ, Dennis ES, Lyon BR (2005) Simple sequence repeat (SSR) markers reveal low levels of polymorphism between cotton (Gossypium hirsutum L.) cultivars. Aust J Agric Res 56:301–307

    Article  CAS  Google Scholar 

  • Saeed M, Guo W, Zhang T (2014) Association mapping for salinity tolerance in cotton (Gossypium hirsutum L.) germplasm from US and diverse regions of China. Aust J Crop Sci 8:338–346

    CAS  Google Scholar 

  • Smith CW, Coyle GG (1997) Association of fiber quality parameters and within boll yield components in upland cotton. Crop Sci 37:1775–1779

    Article  Google Scholar 

  • Stich B, Maurer HP, Melchinger AE, Frisch M, Heckenberger M, van der Voort JR et al (2006) Comparison of linkage disequilibrium in elite European maize inbred lines using AFLP and SSR markers. Mol Breed 17:217–226. doi:10.1007/s11032-005-5296-2

    Article  CAS  Google Scholar 

  • Stranger BE, Stahl EA, Raj T (2011) Progress and promise of genome-wide association for human complex trait genetics. Genetics 187:367–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sukumaran S, Yu J (2014) Association mapping of genetic resources: achievements and future perspectives. In: Tuberosa R, Graner A, Frison E (eds) Genomics of plant genetic resources. Springer, Netherlands, pp 207–235. doi:10.1007/978-94-007-7572-5_9

    Chapter  Google Scholar 

  • Tyagi P, Gore MA, Bowman DT, Campbell BT, Udall JA, Kuraparthy V (2014) Genetic diversity and population structure in the US Upland cotton (Gossypium hirsutum L.). Theor Appl Genet 127:283–295

    Article  PubMed  Google Scholar 

  • Upadhyaya HD, Wang YH, Gowda CLL, Sharma S (2013) Association mapping of maturity and plant height using SNP markers with the sorghum mini core collection. Theor Appl Genet 126:2003–2015

    Article  CAS  PubMed  Google Scholar 

  • van Deynze A, Stoffel K, Lee M, Wilkins TA, Kozik A, Cantrell RG, You JZ, Kohel RJ, Stelly DM (2009) Sampling nucleotide diversity in cotton. BMC Plant Biol 9:125

    Article  PubMed  PubMed Central  Google Scholar 

  • VanRaden PM (2008) Efficient methods to compute genomic predictions. J Dairy Sci 91:4414–4423

    Article  CAS  PubMed  Google Scholar 

  • Varilo T, Paunio T, Parker A, Perola M, Meyer J, Terwilliger JD, Peltonen L (2003) The interval of linkage disequilibrium (LD) detected with microsatellite and SNP markers on chromosomes of Finnish populations with different histories. Human Mol Genet 12:51–59

    Article  CAS  Google Scholar 

  • Wan Q, Zhang Z, Hu M, Chen L, Liu D, Chen X, Wang W, Zheng J (2007) T 1 locus in cotton is the candidate gene affecting lint percentage, fiber quality and spiny bollworm (Earias spp.) resistance. Euphytica 158:241–247

    Article  CAS  Google Scholar 

  • Wang K, Wang Z, Li F, Ye W, Wang J, Song G, Yue Z, Cong L, Shang H (2012a) The draft genome of a diploid cotton Gossypium raimondii. Nat Genet 44:1098–1103

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Yan J, Zhao J, Song W, Zhang X, Xiao Y, Zheng Y (2012b) Genome-wide association study (GWAS) of resistance to head smut in maize. Plant Sci 196:125–131

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Huang C, Guo H, Li X, Zhao W, Dai B, Yan Z, Lin Z (2015a) QTL Mapping for fiber and yield traits in Upland Cotton under multiple environments. PLoS ONE 10(6):e0130742

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang S, Chen J, Zhang W, Hu Y, Chang L, Wang Q et al (2015b) Sequence-based ultra-dense genetic and physical maps reveal structural variations of allopolyploid cotton genomes. Genome Biol 16:108

    Article  PubMed  PubMed Central  Google Scholar 

  • Williams ER, John JA (1989) Construction of row and column designs with contiguous replicates. J R Stat Soc Ser C 38:149–154

    CAS  Google Scholar 

  • Yan J, Warburton M, Crouch J (2011) Association mapping for enhancing maize (Zea mays L.) genetic improvement. Crop Sci 51:433–449. doi:10.2135/cropsci2010.04.0233

    Article  Google Scholar 

  • Yang XH, Yan JB, Shah T, Warburton ML, Li Q et al (2010) Genetic analysis and characterization of a new maize association mapping panel for quantitative trait loci dissection. Theor Appl Genet 121:417–431

    Article  PubMed  Google Scholar 

  • Yu JM, Buckler ES (2006) Genetic association mapping and genome organization of maize. Curr Opin Biotech 17:155–160

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    Article  CAS  PubMed  Google Scholar 

  • Zeng LH, Meredith WR (2009) Associations among lint yield, yield components, and fiber properties in an introgressed population of cotton. Crop Sci 49:1647–1654

    Article  Google Scholar 

  • Zeng L, Meredith WR Jr, Gutierrez OA, Boykin DL (2009) Identification of associations between SSR markers and fibre traits in an exotic germplasm derived from multiple cross among Gossypium tetraploid species. Theor Appl Genet 119:93–103

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Wang XF, Li ZK, Zhang GY, Ma ZY (2011) Assessing genetic diversity of cotton cultivars using genomic and newly developed expressed sequence tag-derived microsatellite markers. Genet Mol Res 10:1462–1470

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Zhang J, Ma J, Tang S, Liu D, Teng Z, Liu D, Zhang Z (2012) Genetic mapping and quantitative trait locus analysis of fiber quality traits using a three-parent composite population in upland cotton (Gossypium hirsutum L.). Mol Breed 29:335–348

    Article  Google Scholar 

  • Zhang T, Qian N, Zhu X, Chen H, Wang S, Mei H, Zhang Y (2013) Variations and transmission of QTL alleles for yield and fiber qualities in upland cotton cultivars developed in China. PLoS ONE 8:e57220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Wang H, Chen W, Li Y (2014) Genetic structure, linkage disequilibrium and association mapping of Verticillium wilt resistance in elite cotton (Gossypium hirsutum L.) germplasm population. PLoS ONE 9(1):e86308

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou G, Hao D, Chen G, Lu H, Shi M, Mao Y, Zhang Z, Huang X, Xue L (2016) Genome-wide association study of the husk number and weight in maize (Zea mays L.). Euphytica 201:195–205. doi:10.1007/s10681-016-1698-y

    Article  CAS  Google Scholar 

  • Zhu C, Gore M, Buckler ES, Yu J (2008) Status and prospects of association mapping in plants. The Plant Genome 1:5–20

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by Cotton Breeding Australia, a joint venture between CSIRO and Cotton Seed Distributors. The authors would like to thank technical staff of CSIRO cotton breeding group, particularly Alan Thompson, Kay Smith, Sandra Megann, Jo Price and Kellie Cooper, as well as Vanessa Gillespie and Ray Yuan of the Cotton Marker Disease team, for their invaluable contribution to this work. Andrew Spriggs provided bioinformatics support. We also thank Rowan Bunch and Dr. Bill Barendse for processing and help with the analysis of the Illumina CottonSNP63 K assays. We thank Drs. Linda Broadhurst and James Kajik for their comments and suggestions on earlier versions of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Washington Gapare.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gapare, W., Conaty, W., Zhu, QH. et al. Genome-wide association study of yield components and fibre quality traits in a cotton germplasm diversity panel. Euphytica 213, 66 (2017). https://doi.org/10.1007/s10681-017-1855-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-017-1855-y

Keywords

Navigation