Advertisement

Euphytica

, 213:52 | Cite as

Inheritance of type IV glandular trichome density and its association with whitefly resistance from Solanum galapagense accession LA1401

  • Marcela Carvalho AndradeEmail author
  • Alex Antônio da Silva
  • Irã Pinheiro Neiva
  • Izabela Regina C. Oliveira
  • Evaristo Mauro De Castro
  • David Merrill Francis
  • Wilson Roberto Maluf
Article

Abstract

Tomato is affected by a large number of arthropod pests, among which the whitefly (Bemisia tabaci) is considered to be one of the most destructive. Several accessions of the wild species of Solanum galapagense, including accession LA1401, are considered resistant to whitefly (B. tabaci). This resistance has been associated with the presence of type IV glandular trichomes on the leaf surface. Our research aimed to study the inheritance of type IV glandular trichome density and its association with resistance to whitefly (B. tabaci biotype B) in populations derived from the interspecific cross Solanum lycopersicum × S. galapagense ‘LA1401.’ High estimates for both broad-sense and narrow-sense heritabilities of type IV glandular trichome densities suggest that inheritance of this trait is not complex. Whitefly resistance was associated with high density of type IV glandular trichomes. F2 (S. galapagense × S. lycopersicum) population plants selected for the highest densities of type IV glandular trichomes showed similar levels of resistance to those found in the donor of resistance LA1401.

Keywords

Heritability Negative binomial Zero-inflated Poisson Bemisia tabaci biotype B 

Notes

Acknowledgements

The authors wish to acknowledge the universities, agencies and company that supported this research project: Universidade Federal de Lavras (UFLA), The Ohio State University (OSU), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) and HortiAgro Sementes S.A.

Supplementary material

10681_2016_1792_MOESM1_ESM.pdf (338 kb)
Online Resource 1 (PDF 337 kb)

References

  1. Alvarenga M (2013) Tomate: produção em campo, casa de vegetação e hidroponia. rev. Editora Universitária de Lavras, LavrasGoogle Scholar
  2. Byrne DN, Bellows JRTS (1991) Whitefly biology. Annu Rev Entomol 36:431–457. doi: 10.1146/annurev.en.36.010191.002243 CrossRefGoogle Scholar
  3. Costa EMR (2013) Relação entre densidade de tricomas foliares e teores de zingibereno e de acilaçúcares em tomateiros resistentes a pragas. Dissertation, Universidade Federal de LavrasGoogle Scholar
  4. Firdaus S, Heusden AWV, Hidayat N, Supena EDJ, Visser RGF, Vosman B (2012) Resistance to Bemisia tabaci in tomato wild relatives. Euphytica 187:31–45. doi: 10.1007/s10681-012-0704-2 CrossRefGoogle Scholar
  5. Firdaus S, Van Heusden AW, Hidayati N et al (2013) Identification and QLT mapping of whitefly resistance components in Solanum galapagense. Theor Appl Genet 126:1487–1501. doi: 10.1007/s00122-013-2067-z CrossRefPubMedGoogle Scholar
  6. Fobes JF, Mudd JB, Marsden MPF (1985) Epicuticular lipid accumulation on the leaves of Lycopersicon pennellii (Corr.) D’Arcy e Lycopersicon esculentum Mill. Plant Physiol 77:567–570. doi: 10.1104/pp.77.3.567 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Freitas JA, Maluf WR, Das Graças Cardoso M, Gomes LA, Bearzotti E (2002) Inheritance of foliar zingiberene contents and their relationship to trichome densities and whitefly resistance in tomatoes. Euphytica 127:275–287. doi: 10.1023/A:1020239512598 CrossRefGoogle Scholar
  8. Goffreda JC, Mutschler MA, Avé DA, Tingey WM, Steffens JC (1989) Aphid deterrence by glucose esters in glandular trichome exudate of the wild tomato, Lycopersicon pennellii. J Chem Ecol 15:2135–2147. doi: 10.1007/BF01207444 CrossRefPubMedGoogle Scholar
  9. Gonçalves LD (2006) Herança do teor de acilaçúcates em genótipos de tomateiro e sua relação com tricomas foliares e repelência ao ácaro Tetranychus evansi. Dissertation, Universidade Federal de LavrasGoogle Scholar
  10. Hilbe JM (2011) Negative binomial regression. Cambridge University, New YorkCrossRefGoogle Scholar
  11. Jouy N, Bordat D, Bessiere JM (1992) Identification of (2,3,4-tri-O-acyl)-a-d-glucopyranosyl-(3-O-acyl)-b-d-fructofuranoside, responsable of the righ level of leafminer resistance in Lycopersicon cheesmanii. Rep Tomato Genet Coop 42:22Google Scholar
  12. Lucatti AF, Van Heusden AW, De Vos RCH, Visser RGF, Vosman B (2013) Differences in insect resistance between tomato species endemic to the Galapagos Islands. BMC Evol Biol 13:175. doi: 10.1186/1471-2148-13-175 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Lucatti AF, Meijer-Dekens FR, Mumm R, Visser RG, Vosman B, Van Heusden S (2014) Normal adult survival but reduced Bemisia tabaci oviposition rate on tomato lines carrying an introgression from S. habrochaites. BMC Genet 15:142. doi: 10.1186/s12863-014-0142-3 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Lucini T, Faria MV, Rohde C, Resende JTV, De Oliveira JRF (2015) Acylsugar and the role of trichomes in tomato genotypes resistance to Tetranychus urticae. Arthropod-Plant Interact 9:45–53. doi: 10.1007/s11829-014-9347-7 CrossRefGoogle Scholar
  15. Luckwill LC (1943) The genus Lycopersicon: an historical, biological and taxonomic survey of wild and cultivated tomatoes. Aberdeen University, AberdeenGoogle Scholar
  16. Maciel GM, Maluf WR, Silva VF, Gonçalves NA, Gomes LAA (2011) Híbridos pré-comerciais resistentes a Tuta absoluta obtidos de linhagem de tomateiro rica em acilaçúcares. Hortic Bras 29:151–156. doi: 10.1590/S0102-05362011000200003 CrossRefGoogle Scholar
  17. Mahmoud MH, Jones RA, El-Beltagy AS (1986) Comparative responses to high salinity between salt-sensitive and salt-tolerant genotypes of the tomato. Acta Hortic 190:533–544. doi: 10.17660/ActaHortic.1986.190.62 CrossRefGoogle Scholar
  18. Maluf WR, Campos GA, Cardoso MG (2001) Relationships between trichome types and spider mite (Tetranychus Evansi) repellence in tomatoes with respect to foliar zingiberene contents. Euphytica 121:73–80. doi: 10.1023/A:1012067505361 CrossRefGoogle Scholar
  19. Maluf WR, Inoue IF, Ferreira RPD, Gomes LAA, Castro EM, Cardoso MG (2007) Higher glandular trichome density in tomato leaflets and repellence to spider mites. Pesqui Agropecu Bras 42:1227–1235. doi: 10.1590/S0100-204X2007000900003 CrossRefGoogle Scholar
  20. Morales FJ, Jones PG (2004) The ecology and epidemiology of whitefly-transmitted viruses in Latin America. Virus Res 100:57–65. doi: 10.1016/j.virusres.2003.12.014 CrossRefPubMedGoogle Scholar
  21. Muigai SG, Schuster DJ, Snyder JC, Scott JW, Bassett MJ, Mcauslane HJ (2002) Mechanisms of resistance in Lycopersicon germplasm to the whitefly Bemisia argentifolii. Phytoparasitica 30:347–360. doi: 10.1007/BF02979682 CrossRefGoogle Scholar
  22. Muigai SG, Bassett MJ, Schuster DJ, Scott JW (2003) Greenhouse and field screening of wild Lycopersicon germplasm for resistance to the whitefly Bemisia Argentifolii. Phytoparasitica 31:27–38. doi: 10.1007/BF02979764 CrossRefGoogle Scholar
  23. Peralta IE, Spooner DM, Knapp S (2008) Taxonomy of wild tomatoes and their relatives (Solanum sect. Lycopersicoides, sect. Juglandifolium, sect. Lycopersicon; Solanaceae. Syst Bot Monogr 84:1–186. doi: 10.2307/25027972 Google Scholar
  24. Razdan MK, Mattoo AK (2006) Genetic improvement of solanaceous crops: tomato. CRC, Boca RatonGoogle Scholar
  25. Rodríguez-López MJ, Garzo E, Bonani JP, Fereres A, Fernández-Muñoz R, Moriones E (2011) Whitefly resistance traits derived from the wild tomato Solanum pimpinellifolium affect the preference and feeding behavior of Bemisia tabaci and reduce the spread of Tomato yellow leaf curl virus. Phytopathology 101:1191–1201. doi: 10.1094/PHYTO-01-11-0028 CrossRefPubMedGoogle Scholar
  26. Saeidi Z (2012) Inheritance of type IV glandular trichomes and two-spotted spider mite resistance in an interspecific cross of Lycopersicon esculentum × L. pennellii ‘LA2580’. J Res Agric Sci 8:157–163Google Scholar
  27. SAS Institute (2011) SAS® 9.3 system options: reference. SAS Institute, CaryGoogle Scholar
  28. Shannon MC, Wrona AF (1992) Salt tolerance of a selected line from the cross between a wild, tolerant tomato species (Lycopersicon cheesmanii, ecotype LA1401) and a cultivated species (L. esculentum mill.). HortScience 27:597Google Scholar
  29. Simmons AT, Gurr GM (2004) Trichome-based host plant resistance of Lycopersicon species and the biocontrol agent Mallada signata: are they compatible? Entomol Exp Appl 113:95–101. doi: 10.1111/j.0013-8703.2004.00210.x CrossRefGoogle Scholar
  30. Vello NA, Vencovsky R (1974) Variâncias associadas às estimativas da variância genética e o coeficiente de herdabilidade. ESALQ, PiracicabaGoogle Scholar
  31. Wright S (1968) The genetics of quantitative variability. In: Wright S (ed) Evolution and genetics of populations, 2nd edn. Univeristy of Chicago, Chicago, pp 373–420Google Scholar
  32. Zuur A, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer Science & Business Media, BerlinCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Marcela Carvalho Andrade
    • 1
    Email author
  • Alex Antônio da Silva
    • 1
  • Irã Pinheiro Neiva
    • 2
  • Izabela Regina C. Oliveira
    • 3
  • Evaristo Mauro De Castro
    • 1
  • David Merrill Francis
    • 4
  • Wilson Roberto Maluf
    • 2
  1. 1.Department of BiologyFederal University of LavrasLavrasBrazil
  2. 2.Department of AgricultureFederal University of LavrasLavrasBrazil
  3. 3.Department of Exact SciencesFederal University of LavrasLavrasBrazil
  4. 4.Department of Horticulture and Crop ScienceThe Ohio State UniversityWoosterUSA

Personalised recommendations