, Volume 212, Issue 3, pp 501–514 | Cite as

Chromosome markers confirm origin of Heliconia hybrids and triploids

  • Marília Gabriela de Santana Costa
  • Brunno Sérgio Ferreira Leite
  • Vivian Loges
  • Ebenézer Bernardes Correia Silva
  • Andreza Santos da Costa
  • Walma Nogueira Ramos Guimarães
  • Ana Christina Brasileiro-Vidal


Heliconia L., the only genus in the Heliconiaceae family, comprises about 380 species with high ornamental potential. However, the identification of genotypes—mainly based on morphological characteristics—has generated synonyms. Therefore, it becomes necessary to apply novel techniques to differentiate genotypes and elucidate the origin of hybrids and triploids. The aim of the present work was the cytogenetic characterization of 18 Heliconia genotypes, including three hybrids, two triploids and their possible parent plants, by means of chromosome counting, staining with the fluorochromes CMA and DAPI, and FISH for 45S and 5S rDNA sites. The analyses revealed 16 diploid (2n = 2x = 24) and two triploid genotypes (2n = 3x = 36), with new counts for eight genotypes, including the triploid ‘Suriname Sassy’. The karyotypes were symmetric, with chromosomes varying from 0.88 to 3.35 µm. Regarding the CMA/DAPI staining and FISH, one CMA+/DAPI0/5S rDNA band was observed in the proximal region of two and three small chromosomes in the diploid and triploid genotypes, respectively. The CMA++/DAPI/45S rDNA markings varied from two to four sites per genotype, revealing some interesting heteromorphisms. The distribution of 5S and 45S rDNA sites, both CMA-positive, corroborated the origin of the triploid genotypes ‘Sassy’ and ‘Suriname Sassy’ from diploid genotypes of H. psittacorum, as well as the origin of the hybrids of H. psittacorum × H. spathocircinata (‘Golden Torch’ and ‘Golden Torch Adrian’) and H. caribaea × H. bihai cv. ‘Jacquinii’ from their respective parent species.


45S rDNA Chromosome makers CMA/DAPI FISH Hybrids Triploids 



The authors would like to thank the research funding organs CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for financial support, and the IAC (Instituto Agronômico de Campinas), in the person of Dr. Carlos Castro, for providing rhizomes of H. spathocircinata, Dr. Marcelo Guerra, for allowing the use of his laboratory, Dr. Ana Maria Benko Iseppon, for her suggestions and the Bem-Te-Vi Farm.

Supplementary material

10681_2016_1780_MOESM1_ESM.tif (12.2 mb)
Online Resource 1 Metaphases of Heliconia genotypes stained with the fluorochromes CMA (yellow) and DAPI (pseudo-colored in grey): (a) H. latispatha Bentham cv. ‘Distans’; (b) H. stricta Huber; (c) H. stricta Huber cv. ‘Fire Bird’; (d) H. wagneriana Petersen; (e) H. collinsiana Griggs; (f) H. pendula Wawra; (g) H. rauliniana Barreiros; and (h) H. rostrata Ruiz & Pavón. Bar in h corresponds to 10 µm. Supplementary material 1 (TIFF 12527 kb)


  1. Anderson GJ (1984) Chromosome number reports LXXXV. Taxon 33:756–760CrossRefGoogle Scholar
  2. Angiosperm Phylogeny Group (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161:105–121. doi: 10.1111/j.1095-8339.2009.00996.x CrossRefGoogle Scholar
  3. Bartos J, Alkhimova O, Dolezelová M, De Langhe E, Dolezel J (2005) Nuclear genome size and genomic distribution of ribosomal DNA in Musa and Ensete (Musaceae): taxonomic implications. Cytogenet Genome Res 109:50–57. doi: 10.1159/000082381 CrossRefPubMedGoogle Scholar
  4. Berry F, Kress WJ (1991) Heliconia: an identification guide. Smithsonian Institution Press, Washington, p 334. doi: 10.2307/2807050 Google Scholar
  5. Brasileiro-Vidal AC, Santos-Serejo JA, Soares-Filho WS, Guerra M (2007) A simple chromosomal marker can reliably distinguishes Poncirus from Citrus species. Genetica (The Hague) 129:273–279. doi: 10.1007/s10709-006-0007-4 Google Scholar
  6. Carvalho R, Soares Filho WS, Brasileiro-Vidal AC, Guerra M (2005) The relationships among lemons, limes and citron: a chromosomal comparison. Cytogenet Genome Res 109:276–282. doi: 10.1159/000082410 CrossRefPubMedGoogle Scholar
  7. Castro CEF (1993) Helicônias como flores de corte: adequação de espécies e tecnologia pós-colheita. PhD Thesis, Universidade de São Paulo, PiracicabaGoogle Scholar
  8. Castro CEF, May A, Goncalves C (2007) Atualização da nomenclatura de espécies do gênero Heliconia (Heliconiaceae). Revista Brasileira de Horticultura Ornamental 3:38–62. doi: 10.14295/rbho.v13i1.204 Google Scholar
  9. Čížková J, Hřibová E, Christelová P, Van den Houwe I, Häkkinen M, Roux N, Swennen R, Doležel J (2015) Molecular and cytogenetic characterization of wild Musa species. PLoS One 10:e0134096. doi: 10.1371/journal.pone.0134096 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Costa AS, Loges V, Castro ACR, Bezerra GJM, Santos VF (2007) Variabilidade genética e correlações entre caracteres de cultivares e híbridos de Heliconia psittacorum. Revista Brasileira de Ciências Agrárias 2:187–192Google Scholar
  11. Criley RA (2000) Seasonal flowering patterns for Heliconia shown by grower records. Acta Hortic 541(159–165):2000. doi: 10.17660/ActaHortic.2000.541.22 Google Scholar
  12. Gowda V, Erickson DL, Kress WJ (2012) Development and characterization of microsatellite loci for two caribbean Heliconia (Heliconiaceae: H. bihai and H. caribaea). Am J Bot 99:e81–e83. doi: 10.3732/ajb.1100386 CrossRefPubMedGoogle Scholar
  13. Guangsui Y, Junmei Y, Qingyun L, Yanxia Z, Zhiqun Z (2010) Karyotypes comparison of eight varieties of Heliconia spp. Chin J Trop Crops 12:2118–2123Google Scholar
  14. Guimarães WNR, Ferraz GMG, Martins LSS, Resende LV, Burity HA, Loges V (2012) Genetic diversity analysis of Heliconia psittacorum cultivars and interspecific hybrids using nuclear and chloroplast DNA regions. In: Aflakpui G (ed) Agricultural science. InTech, Rijeka, pp 11–22. doi: 10.5772/48815 Google Scholar
  15. Guimarães WNR, Martins LSS, Castro CEF, Carvalho FJ, Loges V (2014) Heliconia phenotypic diversity based on qualitative descriptors. Genet Mol Res 13:3128–3142. doi: 10.4238/2014.April.17.9 CrossRefPubMedGoogle Scholar
  16. Hanson L, McMahon KA, Johnson MA, Bennett MD (2001) First nuclear DNA C-values for another 25 angiosperm families. Ann Bot 88:851–858CrossRefGoogle Scholar
  17. Heslop-Harrison JS, Schwazarcher T, Anamthawat-Jónssonn K, Leitch AR, Shi M (1991) In situ hybridization with automated chromosome denaturation. Technique 3:109–115Google Scholar
  18. Isaza L, Marulanda ML, López AM (2012) Genetic diversity and molecular characterization of several Heliconia species in Colombia. Genet Mol Res 11:4552–4563. doi: 10.4238/2012.November.12.9 CrossRefPubMedGoogle Scholar
  19. Kaemwong S, Eksomtramage L (1998) Chromosome numbers of genus Heliconia. Plant Genet Breed 20:489–495Google Scholar
  20. Kress WJ, Betancur J, Roesel CS, Echeverry CBE (1993) Lista preliminar de las heliconias de Colombia y cinco especies nuevas. Caldasia 17:183–197Google Scholar
  21. Książczyk T, Zwierzykowska E, Molik K, Taciak M, Krajewski P, Zwierzykowski Z (2015) Genome-dependent chromosome dynamics in three successive generations of the allotetraploid Festuca pratensis × Lolium perenne hybrid. Protoplasma 252:985–996. doi: 10.1007/s00709-014-0734-9 CrossRefPubMedGoogle Scholar
  22. Kumar PP, Yau JCK, Goh CJ (1998) Genetic analysis of Heliconia species and cultivars with randomly amplified polymorphic DNA (RAPD) makers. J Am Soc Hortic Sci 123:91–97Google Scholar
  23. Lee YH, Ng NY, Goh CJ (1994) Pollen formation and fruit set in some cultivars of Heliconia psittacorum. Sci Hortic 60:167–172. doi: 10.1016/0304-4238(94)90072-8 CrossRefGoogle Scholar
  24. Loges V, Teixeira MCF, Castro ACR, Costa AS (2005) Colheita, pós- colheita e embalagem de flores tropicais em Pernambuco. Horticultura Brasileira 23:699–702. doi: 10.1590/S0102-05362005000300001 CrossRefGoogle Scholar
  25. Marouelli LP, Inglis PW, Ferreira MA, Buso GSC (2010) Genetic relationships among Heliconia (Heliconiaceae) species based on RAPD markers. Genet Mol Res 9:1377–1387. doi: 10.4238/vol9-3gmr847 CrossRefPubMedGoogle Scholar
  26. Moraes AP, Soares-Filho WS, Guerra M (2007) Karyotype diversity and the origin of grapefruit. Chromosom Res 15:115–121. doi: 10.1007/s10577-006-1101-2 CrossRefGoogle Scholar
  27. Nakai T (1941) Notulae ad Plantas Asiae Orientalis. J Jpn Bot 17:1–15Google Scholar
  28. Nicolosi E, Deng ZN, Gentile A, La Malfa S, Continella G, Tribulato E (2000) Citrus phylogeny and genetic origin of important species as investigated by molecular markers. Theor Appl Genet 100:1155–1166. doi: 10.1007/s001220051419 CrossRefGoogle Scholar
  29. Omanakumari N, Mathew PM (1976) Developmental abnormalities in microspores of Heliconia bihzi Linn. New Bot 3:33–37Google Scholar
  30. Osuji JO, Crouch J, Harrison G, Heslop-Harrison JS (1998) Molecular cytogenetics of Musa species, cultivars and hybrids: location of 18S-5.8S-25S and 5S rDNA and telomere-like sequences. Ann Bot 82:243–248CrossRefGoogle Scholar
  31. Pedrosa A, Jantsch MF, Moscone EA, Ambros PF, Schweizer D (2001) Characterisation of pericentromeric and sticky intercalary heterochromatin in Ornithogalum longibracteatum (Hyacinthaceae). Chromosoma 110:203–213. doi: 10.1007/s004120000125 CrossRefPubMedGoogle Scholar
  32. Pedrosa A, Sandal N, Stougaard J, Schweizer D, Bachmair A (2002) Chromosomal map of the model legume Lotus japonicus. Genetics 161:1661–1672PubMedPubMedCentralGoogle Scholar
  33. Pereira FRA, Moraes Filho RM, Martins LSS, Montarroyos AVV, Loges V (2016) Genetic diversity and morphological characterization of half-sib families of Heliconia bihai L., H. chartacea Lane ex Barreiros, and H. wagneriana Peterson. Genet Mol Res. doi: 10.4238/gmr.15028003 Google Scholar
  34. Rocha FHA, Loges V, Costa ASD, Aragão FASD, Santos VF (2010) Genetic study with Heliconia psittacorum and interspecific hybrids. Crop Breed Appl Biotechnol 10:282–288. doi: 10.1590/S1984-70332010000400001 CrossRefGoogle Scholar
  35. Sarkar AK, Datta N, Chatterjee U (1972) Chromosome survey of certain angiosperms I. Bull Bot Surv India 14:170. doi: 10.20324/nelumbo/v14/1972/75276 Google Scholar
  36. Schweizer D, Ambros PF (1994) Chromosome banding. In: Gosden JR (ed) Methods in molecular biology, vol 29. Humana Press, Totawa, pp 97–112Google Scholar
  37. Sheela VL, Geetha Lekshmi PR, Jayachandran Nair CS, Rajmohan K (2006) Molecular characterization of Heliconia by RAPD assay. J Trop Agric 44:37–41Google Scholar
  38. Silva AEB, Soares-Filho WS, Guerra M (2013) Linked 5S and 45S rDNA sites are highly conserved through the subfamily Aurantioideae (Rutaceae). Cytogenet Genome Res 140:62–69. doi: 10.1159/000350695 CrossRefGoogle Scholar
  39. Sousa A, Cusimano N, Renner SS (2014) Combining FISH and model-based predictions to understand chromosome evolution in Typhonium (Araceae). Ann Bot 113:669–680. doi: 10.1093/aob/mct302 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Swingle WT, Reece PC (1967) The botany of Citrus and its wild relatives. In: Reuther W, Weber HJ, Batchelor LD (eds) The Citrus industry: history, world distribution, botany and varieties. University of California Press, Berkeley, pp 190–430Google Scholar
  41. Tanaka T (1977) Fundamental discussion of Citrus classification. Studies Citrol 14:1–6Google Scholar
  42. The Plant List (2013) Version 1.1. Accessed 1 January 2016
  43. Wang Q, Wang J, Zhang Y, Zhang Y, Xu S, Lu Y (2015) The application of fluorescence in situ hybridization in different ploidy levels cross-breeding of lily. PLoS One 10:e0126899. doi: 10.1371/journal.pone.0126899 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Wanzenböck EM, Schofer C, Schweizer D, Bachmair A (1997) Ribosomal transcription units integrated via T-DNA transformation associate with the nucleolus and do not require upstream repeat sequences for activity in Arabidopsis thaliana. Plant J 11:1007–1016. doi: 10.1046/j.1365-313X.1997.11051007.x CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Marília Gabriela de Santana Costa
    • 1
  • Brunno Sérgio Ferreira Leite
    • 2
  • Vivian Loges
    • 1
  • Ebenézer Bernardes Correia Silva
    • 3
  • Andreza Santos da Costa
    • 1
  • Walma Nogueira Ramos Guimarães
    • 1
    • 4
  • Ana Christina Brasileiro-Vidal
    • 1
    • 2
  1. 1.Departamento de Agronomia da Universidade Federal Rural de Pernambuco (UFRPE)RecifeBrazil
  2. 2.Departamento de Genética da Universidade Federal de Pernambuco (UFPE)RecifeBrazil
  3. 3.Departamento de Ciências da Natureza do Instituto Federal de Alagoas (IFAL)MaceióBrazil
  4. 4.Departamento de Biologia da Universidade Federal Rural de Pernambuco (UFRPE)RecifeBrazil

Personalised recommendations