Euphytica

, Volume 212, Issue 2, pp 229–245 | Cite as

The wheat ABA hypersensitive ERA8 mutant is associated with increased preharvest sprouting tolerance and altered hormone accumulation

  • Shantel A. Martinez
  • Keiko M. Tuttle
  • Yumiko Takebayashi
  • Mitsunori Seo
  • Kimberly Garland Campbell
  • Camille M. Steber
Article

Abstract

Wheat preharvest sprouting (PHS) is the germination of mature grain on the mother plant when rain occurs before harvest. Higher abscisic acid (ABA) hormone levels and sensitivity are associated with higher seed dormancy and PHS tolerance. Consistent with this, the ABA hypersensitive ENHANCED RESPONSE TO ABA8 (ERA8) mutant resulted in increased dormancy and PHS tolerance in soft white spring wheat ‘Zak’. ERA8 seeds were initially less responsive to germination-rescue by the hormone gibberellin (GA). ERA8 gained GA and lost ABA sensitivity more slowly than wild-type during dormancy loss through after-ripening and cold imbibition. This study examined if increased ABA sensitivity in ERA8 likely resulted from increased ABA signaling or increased ABA hormone levels. Zak ERA8 had higher initial grain dormancy although endogenous embryo ABA levels were similar in Zak ERA8 and wild-type, suggesting that increased dormancy was due to increased ABA signaling rather than increased ABA accumulation. ABA levels declined with Zak ERA8 after-ripening, suggesting that ABA turnover is not defective. Elevated ERA8 dormancy was also associated with increased embryonic jasmonic acid-Ile and aleurone indole-3-acetic acid (IAA) levels. The possible implication that other plant hormones may influence wheat seed dormancy and germination are discussed.

Keywords

Abscisic acid Gibberellin Auxin Wheat Preharvest sprouting Seed dormancy 

Supplementary material

10681_2016_1763_MOESM1_ESM.pdf (468 kb)
Supplementary material 1 (PDF 468 kb)

References

  1. Ali-Rachedi S, Bouinot D, Wagner M-H et al (2004) Changes in endogenous abscisic acid levels during dormancy release and maintenance of mature seeds: studies with the Cape Verde Islands ecotype, the dormant model of Arabidopsis thaliana. Planta 219:479–488. doi:10.1007/s00425-004-1251-4 CrossRefPubMedGoogle Scholar
  2. Anderberg RJ, Walker-Simmons MK (1992) Isolation of a wheat cDNA clone for an abscisic acid-inducible transcript with homology to protein kinases. Proc Natl Acad Sci 89:10183–10187CrossRefPubMedPubMedCentralGoogle Scholar
  3. Anderson JA, Sorrells ME, Tanksley SD (1993) RFLP analysis of genomic regions associated with resistance to preharvest sprouting in wheat. Crop Sci 33:453–459CrossRefGoogle Scholar
  4. Appleford NEJ, Evans DJ, Lenton JR et al (2006) Function and transcript analysis of gibberellin-biosynthetic enzymes in wheat. Planta 223:568–582CrossRefPubMedGoogle Scholar
  5. Barrero JM, Talbot MJ, White RG et al (2009) Anatomical and transcriptomic studies of the coleorhiza reveal the importance of this tissue in regulating dormancy in barley. Plant Physiol 150:1006–1021CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bewley JD, Bradford KJ, Hilhorst HWM, Nonogaki H (2013) Seeds. Springer New York, New YorkCrossRefGoogle Scholar
  7. Biddulph TB, Mares DJ, Plummer JA, Setter TL (2005) Drought and high temperature increases preharvest sprouting tolerance in a genotype without grain dormancy. Euphytica 143:277–283. doi:10.1007/s10681-005-7882-0 CrossRefGoogle Scholar
  8. Browse J (2009) Jasmonate passes muster: a receptor and targets for the defense hormone. Annu Rev Plant Biol 60:183–205. doi:10.1146/annurev.arplant.043008.092007 CrossRefPubMedGoogle Scholar
  9. Clarke JM, Ronald M, De P, Christensen JV (1984) Effect of weathering on falling numbers of standing and windrowed wheat. Can J Plant Sci 64:457–463CrossRefGoogle Scholar
  10. Corbineau F, Come D (2000) Dormancy of Cereal Seeds as Related to Embryo Sensitivity to ABA and Water Potential. In: Viemont JD, Crabbe J (eds) Dormancy in plants from whole plant behaviour to cellular control. CAB International, Wallingford, pp 183–194CrossRefGoogle Scholar
  11. Cutler S, Ghassemian M, Bonetta D et al (1996) A protein farnesyl transferase involved in abscisic acid signal transduction in Arabidopsis. Science 273:1239–1241. doi:10.1126/science.273.5279.1239 CrossRefPubMedGoogle Scholar
  12. Ellis C, Turner JG (2002) A conditionally fertile coi1 allele indicates cross-talk between plant hormone signalling pathways in Arabidopsis thaliana seeds and young seedlings. Planta 215:549–556. doi:10.1007/s00425-002-0787-4 CrossRefPubMedGoogle Scholar
  13. Fincher GB (1989) Molecular and cellular biology associated with endosperm mobilization in germinating cereal grains. Annu Rev Plant Physiol Plant Mol Biol 40:305–346. doi:10.1146/annurev.pp.40.060189.001513 CrossRefGoogle Scholar
  14. Finch-Savage WE, Leubner-Metzger G (2006) Seed dormancy and the control of germination. New Phytol 171:501–523. doi:10.1111/j.1469-8137.2006.01787.x CrossRefPubMedGoogle Scholar
  15. Finkelstein RR, Gampala SSL, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14:S15–S45. doi:10.1105/tpc.010441 PubMedPubMedCentralGoogle Scholar
  16. Finkelstein RR, Reeves W, Ariizumi T, Steber CM (2008) Molecular aspects of seed dormancy. Annu Rev Plant Biol 59:387–415. doi:10.1146/annurev.arplant.59.032607.092740 CrossRefPubMedGoogle Scholar
  17. Flintham JE (2000) Different genetic components control coat-imposed and embryo-imposed dormancy in wheat. Seed Sci Res 10:43–50CrossRefGoogle Scholar
  18. Fujii H, Verslues PE, Zhu J-K (2007) Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis. Plant Cell 19:485–494. doi:10.1105/tpc.106.048538 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Fujii H, Chinnusamy V, Rodrigues A et al (2009) In vitro reconstitution of an abscisic acid signalling pathway. Nature 462:660–664. doi:10.1038/nature08599 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gerjets T, Scholefield D, Foulkes MJ et al (2010) An analysis of dormancy, ABA responsiveness, after-ripening and pre-harvest sprouting in hexaploid wheat (Triticum aestivum L.) caryopses. J Exp Bot 61:597–607. doi:10.1093/jxb/erp329 CrossRefPubMedGoogle Scholar
  21. Ghassemian M, Nambara E, Cutler S et al (2000) Regulation of abscisic acid signaling by the ethylene response pathway in Arabidopsis. Plant Cell 12:1117–1126. doi:10.1105/tpc.12.7.1117 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Gilroy S, Jones RL (1992) Gibberellic acid and abscisic acid coordinately regulate cytoplasmic calcium and secretory activity in barley aleurone protoplasts. Proc Natl Acad Sci 89:3591–3595. doi:10.1073/pnas.89.8.3591 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Gualano N, Carrari F, Rodriguez MV et al (2007) Reduced embryo sensitivity to abscisic acid in a sprouting-susceptible sorghum (Sorghum bicolor) variety is associated with altered ABA signalling. Seed Sci Res 17:81–90CrossRefGoogle Scholar
  24. Himi E, Mares DJ, Yanagisawa A, Noda K (2002) Effect of grain colour gene (R) on grain dormancy and sensitivity of the embryo to abscisic acid (ABA) in wheat. J Exp Bot 53:1569–1574. doi:10.1093/jxb/erf005 CrossRefPubMedGoogle Scholar
  25. Hugouvieux V, Kwak JM, Schroeder JI (2001) An mRNA cap binding protein, ABH1, modulates early abscisic acid signal transduction in Arabidopsis. Cell 106:477–487CrossRefPubMedGoogle Scholar
  26. Jacobsen JV, Pearce DW, Poole AT et al (2002) Abscisic acid, phaseic acid and gibberellin contents associated with dormancy and germination in barley. Physiol Plant 115:428–441CrossRefPubMedGoogle Scholar
  27. Jacobsen JV, Barrero JM, Hughes T et al (2013) Roles for blue light, jasmonate and nitric oxide in the regulation of dormancy and germination in wheat grain (Triticum aestivum L.). Planta 238:121–138. doi:10.1007/s00425-013-1878-0 CrossRefPubMedGoogle Scholar
  28. Jaiswal V, Mir RR, Mohan A et al (2012) Association mapping for pre-harvest sprouting tolerance in common wheat (Triticum aestivum L.). Euphytica 188:89–102. doi:10.1007/s10681-012-0713-1 CrossRefGoogle Scholar
  29. Johnson RR, Wagner RL, Verhey SD, Walker-Simmons MK (2002) The Abscisic acid-responsive kinase PKABA1 interacts with a seed-specific abscisic acid response element-binding factor, TaABF, and phosphorylates TaABF peptide sequences. Plant Physiol 130:837–846. doi:10.1104/pp.001354 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Johnson RR, Shin M, Shen JQ (2008) The wheat PKABA1-interacting factor TaABF1 mediates both abscisic acid-suppressed and abscisic acid-induced gene expression in bombarded aleurone cells. Plant Mol Biol 68:93–103. doi:10.1007/s11103-008-9354-0 CrossRefPubMedGoogle Scholar
  31. Kashiwakura Y, Kobayashi D, Jikumaru Y, et al (2016) Highly sprouting tolerant wheat grain exhibits extreme dormancy and cold imbibition resistant accumulation of abscisic acid. Plant Cell Physiol pcw051. doi: 10.1093/pcp/pcw051
  32. Kawakami N, Miyake Y, Noda K (1997) ABA insensitivity and low ABA levels during seed development of non-dormant wheat mutants. J Exp Bot 48:1415–1421. doi:10.1093/jxb/48.7.1415 CrossRefGoogle Scholar
  33. Kidwell KK, Shelton GB, Demacon VL et al (2002) Registration of ‘Zak’ wheat. Crop Sci 42:661–662. doi:10.2135/cropsci2002.661a CrossRefGoogle Scholar
  34. Kidwell KK, DeMacon VL, Shelton GB et al (2003) Registration of ‘Macon’ wheat. Crop Sci 43:1561–1563CrossRefGoogle Scholar
  35. Kidwell KK, DeMacon VL, Shelton GB et al (2004) Registration of ‘Eden’ wheat. Crop Sci 44:1870–1871CrossRefGoogle Scholar
  36. Kidwell KK, Demacon VL, Shelton GB et al (2006a) Registration of ‘Otis’ wheat. Crop Sci 46:1386–1387. doi:10.2135/cropsci2005.06-0177 CrossRefGoogle Scholar
  37. Kidwell KK, Shelton GB, Demacon VL et al (2006b) Registration of ‘Louise’ wheat. Crop Sci 46:1384–1386. doi:10.2135/cropsci2005.06-0176 CrossRefGoogle Scholar
  38. Kidwell KK, Shelton GB, DeMacon VL et al (2012) Registration of ‘Babe’ wheat. J Plant Regist 6:156–160Google Scholar
  39. Kobayashi F, Takumi S, Nakamura C (2008) Increased freezing tolerance in an ABA-hypersensitive mutant of common wheat. J Plant Physiol 165:224–232CrossRefPubMedGoogle Scholar
  40. Kobayashi F, Takumi S, Handa H (2010) Identification of quantitative trait loci for ABA responsiveness at the seedling stage associated with ABA-regulated gene expression in common wheat. Theor Appl Genet 121(4):629–641CrossRefPubMedGoogle Scholar
  41. Korasick DA, Enders TA, Strader LC (2013) Auxin biosynthesis and storage forms. J Exp Bot 64:2541–2555. doi:10.1093/jxb/ert080 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Kulwal P, Ishikawa G, Benscher D et al (2012) Association mapping for pre-harvest sprouting resistance in white winter wheat. Theor Appl Genet 125:793–805. doi:10.1007/s00122-012-1872-0 CrossRefPubMedGoogle Scholar
  43. Liu P-P, Montgomery TA, Fahlgren N et al (2007) Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post-germination stages. Plant J 52:133–146. doi:10.1111/j.1365-313X.2007.03218.x CrossRefPubMedGoogle Scholar
  44. Liu A, Gao F, Kanno Y et al (2013) Regulation of wheat seed dormancy by after-ripening is mediated by specific transcriptional switches that induce changes in seed hormone metabolism and signaling. PLoS ONE 8:e56570. doi:10.1371/journal.pone.0056570 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Löfke C, Zwiewka M, Heilmann I et al (2013) Asymmetric gibberellin signaling regulates vacuolar trafficking of PIN auxin transporters during root gravitropism. Proc Natl Acad Sci 110:3627–3632. doi:10.1073/pnas.1300107110 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Ma Y, Szostkiewicz I, Korte A et al (2009) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324:1064–1068. doi:10.1126/science.1172408 PubMedGoogle Scholar
  47. Martinez SA, Schramm EC, Harris TJ et al (2014) Registration of Zak soft white spring wheat germplasm with enhanced response to ABA and increased seed dormancy. J Plant Regist 8:217–220. doi:10.3198/jpr2013.09.0060crg CrossRefPubMedPubMedCentralGoogle Scholar
  48. McMaster GJ, Derera NF (1976) Methodology and sample preparation when screening for sprouting damage in cereals. Cereal Res Commun 4:251–254Google Scholar
  49. Millar AA, Jacobsen JV, Ross JJ et al (2006) Seed dormancy and ABA metabolism in Arabidopsis and barley: the role of ABA 8′-hydroxylase. Plant J 45:942–954CrossRefPubMedGoogle Scholar
  50. Morris CF, Paulsen GM, Mueller DD, Faubion JM (1988) Identification of l-Tryptophan as an endogenous inhibitor of embryo germination in white wheat. Plant Physiol 88:435–440CrossRefPubMedPubMedCentralGoogle Scholar
  51. Morris CF, Anderberg RJ, Goldmark PJ, Walker-Simmons MK (1991) Molecular cloning and expression of abscisic acid-responsive genes in embryos of dormant wheat seeds. Plant Physiol 95:814–821CrossRefPubMedPubMedCentralGoogle Scholar
  52. Murayama M, Hayashi S, Nishimura N et al (2012) Isolation of Arabidopsis ahg11, a weak ABA hypersensitive mutant defective in nad4 RNA editing. J Exp Bot 63:5301–5310. doi:10.1093/jxb/ers188 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Nakamura S, Abe F, Kawahigashi H et al (2011) A wheat homolog of MOTHER OF FT AND TFL1 acts in the regulation of germination. Plant Cell 23:3215–3229. doi:10.1105/tpc.111.088492 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Nakashima K, Fujita Y, Kanamori N et al (2009) Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy. Plant Cell Physiol 50:1345–1363. doi:10.1093/pcp/pcp083 CrossRefPubMedGoogle Scholar
  55. Nishimura N, Hitomi K, Arvai AS et al (2009) Structural mechanism of abscisic acid binding and signaling by dimeric PYR1. Science 326:1373–1379. doi:10.1126/science.1181829 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Nyachiro JM, Clarke FR, DePauw RM et al (2002) Temperature effects on seed germination and expression of seed dormancy in wheat. Euphytica 126:123–127. doi:10.1023/A:1019694800066 CrossRefGoogle Scholar
  57. Okamoto M, Kuwahara A, Seo M et al (2006) CYP707A1 and CYP707A2, which encode abscisic acid 8′-Hydroxylases, are indispensable for proper control of seed dormancy and germination in Arabidopsis. Plant Physiol 141:97–107. doi:10.1104/pp.106.079475 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Park S-Y, Fung P, Nishimura N et al (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324:1068–1071. doi:10.1126/science.1173041 PubMedPubMedCentralGoogle Scholar
  59. Paterson AH, Sorrells ME (1990) Inheritance of grain dormancy in white-kernelled wheat. Crop Sci 30:25–30CrossRefGoogle Scholar
  60. Paterson AH, Sorrells ME, Obendorf RL (1989) Methods of evaluation for preharvest sprouting resistance in wheat breeding programs. Can J Plant Sci 69:681–689. doi:10.4141/cjps89-084 CrossRefGoogle Scholar
  61. Ramaih S, Guedira M, Paulsen GM (2003) Relationship of indoleacetic acid and tryptophan to dormancy and preharvest sprouting of wheat. Funct Plant Biol 30:939–945CrossRefGoogle Scholar
  62. Reddy LV, Metzger RJ, Ching TM (1985) Effect of temperature on seed dormancy of wheat. Crop Sci 25:455. doi:10.2135/cropsci1985.0011183X002500030007x CrossRefGoogle Scholar
  63. Ried JL, Walker-Simmons MK (1990) Synthesis of abscisic acid-responsive, heat-stable proteins in embryonic axes of dormant wheat grain. Plant Physiol 93:662–667. doi:10.1104/pp.93.2.662 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Rikiishi K, Maekawa M (2010) Characterization of a novel wheat (Triticum aestivum L.) mutant with reduced seed dormancy. J Cereal Sci 51:292–298CrossRefGoogle Scholar
  65. Rinaldi MA, Liu J, Enders TA et al (2012) A gain-of-function mutation in IAA16 confers reduced responses to auxin and abscisic acid and impedes plant growth and fertility. Plant Mol Biol 79:359–373. doi:10.1007/s11103-012-9917-y CrossRefPubMedPubMedCentralGoogle Scholar
  66. Rodríguez MV, Barrero JM, Corbineau F et al (2015) Dormancy in cereals (not too much, not so little): about the mechanisms behind this trait. Seed Sci Res 25:99–119. doi:10.1017/S0960258515000021 CrossRefGoogle Scholar
  67. Santiago J, Dupeux F, Round A et al (2009) The abscisic acid receptor PYR1 in complex with abscisic acid. Nature 462:665–668. doi:10.1038/nature08591 CrossRefPubMedGoogle Scholar
  68. Schramm EC, Abellera JC, Strader LC et al (2010) Isolation of ABA-responsive mutants in allohexaploid bread wheat (Triticum aestivum L.): drawing connections to grain dormancy, preharvest sprouting, and drought tolerance. Plant Sci 179:620–629. doi:10.1016/j.plantsci.2010.06.004 CrossRefGoogle Scholar
  69. Schramm EC, Nelson SK, Steber CM (2012) Wheat ABA-insensitive mutants result in reduced grain dormancy. Euphytica 188:35–49CrossRefPubMedPubMedCentralGoogle Scholar
  70. Schramm EC, Nelson SK, Kidwell KK, Steber CM (2013) Increased ABA sensitivity results in higher seed dormancy in soft white spring wheat cultivar Zak’. Theor Appl Genet 126:791–803. doi:10.1007/s00122-012-2018-0 CrossRefPubMedGoogle Scholar
  71. Seo M, Jikumaru Y, Kamiya Y (2011) Profiling of hormones and related metabolites in seed dormancy and germination studies. In: Kermode AR (ed) seed dormancy. Humana Press, New York, pp 99–111CrossRefGoogle Scholar
  72. Staswick PE, Tiryaki I (2004) The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 16:2117–2127. doi:10.1105/tpc.104.023549 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Steber CM, Cooney SE, McCourt P (1998) Isolation of the GA-response mutant sly1 as a suppressor of ABI1-1 in Arabidopsis thaliana. Genetics 149:509–521PubMedPubMedCentralGoogle Scholar
  74. Strader LC, Monroe-Augustus M, Rogers KC et al (2008) Arabidopsis iba response5 suppressors separate responses to various hormones. Genetics 180:2019–2031. doi:10.1534/genetics.108.091512 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Torada A, Amano Y (2002) Effect of seed coat color on seed dormancy in different environments. Euphytica 126:99–105. doi:10.1023/A:1019603201883 CrossRefGoogle Scholar
  76. Tuttle KM, Martinez SA, Schramm EC et al (2015) Grain dormancy loss is associated with changes in ABA and GA sensitivity and hormone accumulation in bread wheat, Triticum aestivum (L.). Seed Sci Res 25:179–193. doi:10.1017/S0960258515000057 CrossRefGoogle Scholar
  77. Ullrich SE, Lee H, Clancy JA et al (2009) Genetic relationships between preharvest sprouting and dormancy in barley. Euphytica 168:331–345CrossRefGoogle Scholar
  78. Upadhyay MP, Morris CF, Paulsen GM (1988) Characterization of preharvest sprouting resistance in ‘Clark’s Cream’ white winter wheat. Euphytica 38:85–92. doi:10.1007/BF00024814 CrossRefGoogle Scholar
  79. Walker-Simmons M (1987) ABA levels and sensitivity in developing wheat embryos of sprouting resistant and susceptible cultivars. Plant Physiol 84:61–66. doi:10.1104/pp.84.1.61 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Walker-Simmons M (1988) Enhancement of ABA responsiveness in wheat embryos by high temperature. Plant Cell Environ 11:769–775. doi:10.1111/j.1365-3040.1988.tb01161.x CrossRefGoogle Scholar
  81. Warner RL, Kudrna DA, Spaeth SC, Jones SS (2000) Dormancy in white-grain mutants of Chinese Spring wheat (Triticum aestivum L.). Seed Sci Res 10:51–60Google Scholar
  82. Xu Q, Truong TT, Barrero JM, et al (2016) A role for jasmonates in the release of dormancy by cold stratification in wheat. J Exp Bot erw172. doi: 10.1093/jxb/erw172
  83. Yamauchi Y, Ogawa M, Kuwahara A et al (2004) Activation of gibberellin biosynthesis and response pathways by low temperature during imbibition of Arabidopsis thaliana seeds. Plant Cell 16:367–378. doi:10.1105/tpc.018143 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Ye H, Beighley DH, Feng J, Gu XY (2013) Genetic and physiological characterization of two clusters of quantitative trait loci associated with seed dormancy and plant height in rice. Genes Genomes Genet 3:323–331. doi:10.1534/g3.112.005041 Google Scholar
  85. Yoshimoto K, Jikumaru Y, Kamiya Y et al (2009) Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis. Plant Cell 21:2914–2927. doi:10.1105/tpc.109.068635 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht (outside the USA) 2016

Authors and Affiliations

  1. 1.Molecular Plant Sciences, Department of Crop and Soil SciencesWashington State UniversityPullmanUSA
  2. 2.RIKEN Centre for Sustainable Resource ScienceYokohamaJapan
  3. 3.USDA-ARS Wheat Genetics, Quality, Physiology and Disease Research UnitWashington State UniversityPullmanUSA

Personalised recommendations