Skip to main content
Log in

Mapping of QTL associated with Fusarium root rot resistance and root architecture traits in black beans

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Quantitative Trait Loci (QTL) associated with physiological resistance to Fusarium Root Rot (FRR) and root architecture traits were mapped in a black bean (Phaseolus vulgaris L.) recombinant inbred line (RIL) population. The parents of this population were the landrace Puebla 152 and the cultivar Zorro that differed in root architecture traits. The population was screened against FRR strain FSP-3 in the greenhouse in Uganda and for root architecture traits measured under disease free conditions in the greenhouse in California. The population was also genotyped with 5398 SNP markers using the BARCBean_3_6K Beadchip. Four QTL associated with root architecture traits and one QTL associated with FRR resistance were detected. Total root weight and shallow root weight were associated with the same QTL on chromosome Pv09 at 0.29 Mb. A QTL associated with root length was detected on Pv01 that was independent of the fin gene which controls shoot determinacy. Deep root weight and total plant biomass were associated with the same QTL on Pv05 at 39.20 Mb and mapped 260 kb from the QTL associated with FRR resistance, suggestive of a possible association. None of the QTL accounted for more than 13 % of phenotypic variation, indicative of the fact that several genes of minor influence govern FRR resistance and root traits. Puebla 152 was the source of the beneficial alleles in each QTL detected in this study and is a useful genetic source of root architecture traits that may be valuable in breeding for root rot avoidance in common bean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abawi GS, Pastor-Corrales MA (1990) Root rots of beans in Latin America and Africa, diagnosis, research methodologies, and management strategies. CIAT publication No. 35, ISBN: 958-9183-14-X

  • Afanador LK, Haley SD, Kelly JD (1993) Adoption of a “miniprep” DNA extraction method for RAPD marker analysis in common bean (Phaseolus vulgaris L.). Ann Rep Bean Improv Coop 36:10–11

    Google Scholar 

  • Beebe S (2012) Common bean breeding in the tropics. Plant Breed Rev 36:357–426

    Google Scholar 

  • Beebe SE, Bliss FA, Schwartz HF (1981) Root rot resistance in common bean germplasm of Latin American origin. Plant Dis 65:485–489

    Article  Google Scholar 

  • Berta G, Sampo S, Gamalero E, Massa N, Lemanceau P (2005) Suppression of Rhizoctonia root-rot of tomato by Glomus mossae BEG12 and Pseudomonas fluorescens A6RI is associated with their effect on the pathogen growth and on the root morphogenesis. Europ J Plant Pathol 111:279–288

    Article  Google Scholar 

  • Blair MW, González LF, Kimani PM, Butare L (2010) Genetic diversity, inter-gene pool introgression and nutritional quality of common beans (Phaseolus vulgaris L.) from Central Africa. Theor App Genet 121:237–248

    Article  CAS  Google Scholar 

  • Bravo A, Wallace DH, Wilkinson RE (1969) Inheritance of resistance to Fusarium root rot of beans. Phytopathology 59:1930–1933

    Google Scholar 

  • Broughton WJ, Hernandez G, Blair M, Beebe S, Gepts P, Vanderleyden J (2003) Beans (Phaseolus spp.)-model food legumes. Plant Soil 252:55–128

    Article  CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cichy KA, Snapp SS, Kirk WW (2007) Fusarium root rot incidence and root system architecture in grafted common bean lines. Plant Soil 300:233–244

    Article  CAS  Google Scholar 

  • Cichy KA, Blair MW, Galeano Mendoza CH, Snapp SS, Kelly JD (2009) QTL analysis of root architecture traits and low phosphorus tolerance in an Andean bean population. Crop Sci 49:59–68

    Article  CAS  Google Scholar 

  • FAOSTAT (2015) Statistical Databases. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Flint J, Mott R (2001) Finding the molecular basis of quantitative traits, successes and pitfalls. Nat Rev Genet 2(6):437–445

    Article  CAS  PubMed  Google Scholar 

  • Goodstein DM, Shu S, Howson R, Neupane RD, Hayes RD, Fazo J, Mitros T, William D, Hellsten U, Putnam N, Rokhsar DS (2012) Phytozome, a comparative platform for green plant genomics. Nucleic Acids Res 40:D1178–D1186

    Article  CAS  PubMed  Google Scholar 

  • Hagerty CH, Cuesta-Marcos A, Cregan PB, Song Q, McClean P, Noffsinger SJ, Myers R (2015) Mapping Fusarium solani and Aphanomyces euteiches root rot resistance and root architecture quantitative trait loci in common bean. Crop Sci 55:1969–1977

    Article  CAS  Google Scholar 

  • Heilig JA (2015) QTL mapping of symbiotic nitrogen fixation in dry bean; Evaluation of dry bean genotypes under organic production systems. Doctoral Dissertation, Michigan State University, East Lansing MI. 150 pp

  • Ibarra-Perez FJ, Waines JG, Ehdaie B, Heilig JA, Kelly JD (2014) Phenotyping root and shoot traits of Zorro and Puebla 152 common bean (Phaseolus vulgaris L.) cultivars. Ann Rep Bean Improv Coop 57:107–108

    Google Scholar 

  • Institute SAS (2012) SAS version 9.4. SAS Institute Inc, Cary

    Google Scholar 

  • Kamfwa K, Mwala M, Okori P, Gibson P, Mukankusi C (2013) Identification of QTL for Fusarium root rot resistance in common bean. J Crop Improv 27:406–418

    Article  Google Scholar 

  • Kelly JD, Varner GV, O’Boyle P, Long B (2009) Registration of ‘Zorro’ black bean. J Plant Regist 3:226–230

    Article  Google Scholar 

  • Koinange EMK, Singh SP, Gepts P (1996) Genetic control to the domestication syndrome in common bean. Crop Sci 36:1037–1045

    Article  Google Scholar 

  • Liao H, Yan X, Rubio G, Beebe SE, Blair MWJ, Lynch JP (2004) Genetic mapping of basal root gravitropism and phosphorus acquisition efficiency in common bean. Funct Plant Biol 31:959–970

    Article  CAS  Google Scholar 

  • Lynch J, Van Beem JJ (1993) Growth and architecture of seedling roots of common bean genotypes. Crop Sci 33:1253–1257

    Article  Google Scholar 

  • Mukankusi CM (2008) Improving resistance to Fusarium root rot [Fusarium solani (Mart.) Sacc. f. sp. phaseoli (Burkholder) W.C. Snyder & H.N. Hans.] in common bean (Phaseolus vulgaris L.). PhD Thesis, University of KwaZulu-Natal

  • Mukankusi C, Derera J, Melis R, Gibson PT, Buruchara R (2011) Genetic analysis of resistance to Fusarium root rot in common bean. Euphytica 182:11–23

    Article  CAS  Google Scholar 

  • Navarro FM, Sass ME, Nienhuis J (2008) Identification and confirmation of quantitative trait loci for root rot resistance in snap bean. Crop Sci 48:962–972

    Article  CAS  Google Scholar 

  • Navarro FM, Sass ME, Nienhuis J (2009) Marker-facilitated selection for a major QTL associated with root rot resistance in snap bean (Phaseolus vulgaris L.). Crop Sci 49:850–856

    Article  CAS  Google Scholar 

  • Nzungize J, Gepts P, Buruchara R, Buah S, Ragama P, Busogoro JP, Baudoin JP (2011) Pathogenic and molecular characterization of Pythium species inducing root rot symptoms of common bean in Rwanda. African J Microbiol Res 5:1169–1181

    Article  Google Scholar 

  • O’Brien RG, O’Hare PJ, Glass RJ (1991) Cultural practices in the control of bean root rot. Austral J Exp Agric 31:551–555

    Article  Google Scholar 

  • Obala J, Mukankusi C, Rubaihayo PR, Gibson P, Edema R (2012) Improvement of resistance to Fusarium root rot through gene pyramiding in common bean. African Crop Sci J 20:1–13

    Google Scholar 

  • Otsyula R, Rubaihayo PR, Buruchara R (2003) Inheritance of resistance to Pythium root rots in beans (Phaseolus vulgaris) genotypes. African Crop Sci Conf Proc 6:295–298

    Google Scholar 

  • Overbeek R, Fonstein M, D’souza M, Pusch GD, Maltsev N (1999) The use of gene clusters to infer functional coupling. Proc Natl Acad Sci USA 96:2896–2901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park SJ, Tu JC (1994) Genetic segregation of root rot resistance in dry bean crosses. Ann Rep Bean Improv Coop 37:229–230

    Google Scholar 

  • Repinski SL, Kwak M, Gepts P (2012) The common bean growth habit gene PvTFL1y is a functional homolog of Arabidopsis TFL1. Theor Appl Genet 124:1539–1547

    Article  CAS  PubMed  Google Scholar 

  • Román-Avilés B, Kelly JD (2005) Identification of quantitative trait loci conditioning resistance to Fusarium root rot in common bean. Crop Sci 45:1881–1890

    Article  Google Scholar 

  • Roman-Avilés B, Lewis JM, Kelly JD (2011) Fusarium genetic control: A long term strategy. In: Alves-Santos FM, Diez J (eds) Control of Fusarium Diseases. Research Signpost, Kerala, pp 65–108

    Google Scholar 

  • Román-Avilés B, Snapp SS, Kelly JD (2004) Assessing root traits associated with root rot resistance in common bean. Field Crops Res 86:147–156

    Article  Google Scholar 

  • Rusuku G, Buruchara RA, Gatabazi M, Pastor-Corrales MA (1997) Occurrence and distribution of soil-borne fungi pathogenic to common bean in Rwanda. Plant Dis 81:445–449

    Article  Google Scholar 

  • Schneider KA, Grafton KF, Kelly JD (2001) QTL analysis of resistance to Fusarium root rot in bean. Crop Sci 41:535–542

    Article  CAS  Google Scholar 

  • Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K (2001) dbSNP, the NCBI database of genetic variation. Nucleic Acids Res 29:308–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh SP, Gepts P, Debouck DG (1991) Races of common bean (Phaseolus vulgaris, Fabaceae). Econ Botany 45:379–396

    Article  Google Scholar 

  • Snapp SS, Kirk W, Román-Avilés B, Kelly JD (2003) Root traits play a role in integrated management of Fusarium root rot in snap beans. HortScience 38:187–191

    Google Scholar 

  • Song Q, Jia G, Hyten DL, Jenkins J, Hwang E-Y, Schroeder S, Schmutz J, Jackson SA, McClean P, Cregan PB (2015) SNP assay development for linkage map construction, anchoring whole genome sequence and other genetic and genomic applications in common bean. G3: genes| Genomes|. Genetics 5:2285–2290

    Google Scholar 

  • Tusiime G (2003) Variation and detection of Fusarium solani f. sp. phaseoli and quantification of soil inoculum in common bean fields. Dissertation, Makerere University, Kampala, Uganda

  • Van Ooijen JW (2006) JoinMap®4.0 Software for calculation of genetic linkage maps in experimental populations. Kyazma B.V., Wageningen

    Google Scholar 

  • Voorrips RE (2002) MapChart, Software for the graphical presentation of linkage maps and QTL. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2012) Windows QTL cartographer 2.5. Dep. of Statistics, North Carolina State Univ, Raleigh NC

  • Wang Y, Liu H, Xin Q (2014) Genome-wide analysis and identification of cytokinin oxidase/dehydrogenase (CKX) gene family in foxtail millet (Setaria italica). Crop J 2:244–254

    Article  Google Scholar 

  • Wortmann CS, Kirkby RA, Eledu CA, Allen DJ (1998) Atlas of common bean (Phaseolus vulgaris) CIAT Publication No. 297

Download references

Acknowledgments

The authors would like to acknowledge The National Institute of Food and Agriculture (NIFA) Proposal No. 2012-03600, and the MasterCard Foundation for funding this research; Multistate Research Project W-2150; The California Agricultural Experiment Station, and INIFAP, Mexico. The authors are also grateful to Steven Musoke for technical assistance with disease screening in Uganda; and Dr. Martin Chilvers and Janette Jacobs, Michigan State University, USA for the hands-on pathology training provided at MSU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James D. Kelly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakedde, T., Ibarra-Perez, F.J., Mukankusi, C. et al. Mapping of QTL associated with Fusarium root rot resistance and root architecture traits in black beans. Euphytica 212, 51–63 (2016). https://doi.org/10.1007/s10681-016-1755-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-016-1755-6

Keywords

Navigation