Skip to main content
Log in

Economics of genomic selection: the role of prediction accuracy and relative genotyping costs

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Studies that incorporate economic aspects of plant breeding into the evaluation of selection strategies tend to focus on a specific example. This makes it difficult to generalize the conditions under which one strategy is more cost-effective than the other. We provide a general, average cost framework for quantifying the effects of genomic selection prediction accuracy and varying cost ratios of phenotyping to genotyping on the economic performance of genomic selection relative to traditional phenotypic selection. We assess prediction accuracy as a stochastic function of trait heritability, population-specific effective number of chromosome segments underlying a trait, and training population size. In addition, we set up an analytical method for determining the economically optimal size of the training population under varying cost scenarios for traits that differ with respect to heritability. The results provide quantitative estimates of the economic performance of genomic selection under a wide range of scenarios. The benefits of increasing the training population size beyond the typical size of 400 lines tend to be higher for traits with heritability below 0.1 and for populations with the effective number of chromosome segments above 100. Genomic selection may offer promising economic advantages, but only for traits with heritability roughly below 0.25, unless the per-line cost of phenotyping is higher than the genotyping cost, and the effective number of chromosome segments is smaller than about 100. The model can be used for preliminary economic assessment of genomic selection, and it can be expanded to account for subjective risk preferences of plant breeders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Farid (2015) shows that broad sense heritability for a number of quantitative traits in the common bean (Phaseolus vulgaris L.), including seed yield, nitrogen fixation, flowering (days), maturity (days), seed protein content, leaf chlorophyll concentration, carbon isotope discrimination, resistance to common bacterial blight, can often be lower than 0.25. Our model design was in part based on a common bean breeding program but its applicability can be generalized across species.

  2. In addition, cost-based optimization when multiple traits are selected simultaneously is a potential extension of our model. In this case, genetic gain for different traits would need to be combined into a single genetic gain index by applying a weighting function.

References

  • Abalo G, Tongoona P, Derera J, Edema R (2009) A comparative analysis of conventional and marker-assisted selection methods in breeding maize streak virus resistance in maize. Crop Sci 49(2):509–520

    Article  Google Scholar 

  • Abdel-Ghani AH, Kumar B, Reyes-Matamoros J, Gonzalez-Portilla PJ, Jansen C, San Martin JP, Lee M, Lübberstedt T (2013) Genotypic variation and relationships between seedling and adult plant traits in maize (Zea mays L.) inbred lines grown under contrasting nitrogen levels. Euphytica 189 (1):123-133

  • Albrecht T, Wimmer V, Auinger H-J, Erbe M, Knaak C, Ouzunova M, Simianer H, Schön C-C (2011) Genome-based prediction of testcross values in maize. Theor Appl Genet 123(2):339–350

    Article  PubMed  Google Scholar 

  • Arnaud-Santana E, Coyne D, Eskridge K, Vidaver A (1994) Inheritance low correlations of leafpod, and seed reactions to common blight disease in common beans and implications for selection. J Am Soc Hortic Sci 119(1):116–121

    Google Scholar 

  • Bekele A, Rao NT (2014) Estimates of heritability, genetic advance and correlation study for yield and it’s attributes in maize. Journal of Plant Sciences 2(1):4

    Google Scholar 

  • Billotte N, Marseillac N, Risterucci A-M, Adon B, Brottier P, Baurens F-C, Singh R, Herran A, Asmady H, Billot C (2005) Microsatellite-based high density linkage map in oil palm (Elaeis guineensis Jacq.). Theor Appl Genet 110(4):754–765

    Article  CAS  PubMed  Google Scholar 

  • Briggs WH, McMullen MD, Gaut BS, Doebley J (2007) Linkage mapping of domestication loci in a large maize–teosinte backcross resource. Genetics 177(3):1915–1928

    Article  PubMed  PubMed Central  Google Scholar 

  • Combs E, Bernardo R (2013) Accuracy of Genomewide selection for different traits with constant population size, heritability, and number of markers. The Plant Genome 1:6

    Google Scholar 

  • Córdoba JM, Chavarro C, Schlueter JA, Jackson SA, Blair MW (2010) Integration of physical and genetic maps of common bean through BAC-derived microsatellite markers. BMC Genom 11(1):436

    Article  Google Scholar 

  • Coyer JA, Hoarau G, Sjøtun K, Olsen JL (2008) Being abundant is not enough: a decrease in effective population size over eight generations in a Norwegian population of the seaweed. Fucus serratus. Biol Lett 4(6):755–757

    Article  PubMed  Google Scholar 

  • Daetwyler HD, Villanueva B, Woolliams JA (2008) Accuracy of predicting the genetic risk of disease using a genome-wide approach. PLoS ONE 3(10):e3395

    Article  PubMed  PubMed Central  Google Scholar 

  • Daetwyler HD, Pong-Wong R, Villanueva B, Woolliams JA (2010) The impact of genetic architecture on genome-wide evaluation methods. Genetics 185(3):1021–1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Roos A, Hayes B, Goddard M (2009) Reliability of genomic predictions across multiple populations. Genetics 183(4):1545–1553

    Article  PubMed  PubMed Central  Google Scholar 

  • Dellaert BG, Kahn BE (1999) How tolerable is delay?: consumers’ evaluations of Internet Web sites after waiting. J Interact Mark 13(1):41–54

    Article  Google Scholar 

  • Dreher K, Morris M, Khairallah M, Ribaut J-M, Pandey S, Srinivasan G Is marker-assisted selection cost-effective compared to conventional plant breeding methods? The case of quality protein maize. In: Proceedings of the 4th Annual Conference of the International Consortium on Agricultural Biotechnology Research (ICABR’00), 2002. pp 203-236

  • Duncan RW, Gilbertson RL, Singh SP (2012) Direct and Marker-assisted selection for resistance to common bacterial blight in common bean. Crop Sci 52(4):1511–1521

    Article  Google Scholar 

  • Falconer DS (1981) Introduction to quantitative genetics. vol Ed. 2. Longman, Harlow

  • Farid M (2015) Symbiotic nitrogen fixation in common bean

  • Foolad M, Subbiah P, Ghangas G (2002) Parent-offspring correlation estimate of heritability for early blight resistance in tomato. Lycopersicon esculentum Mill. Euphytica 126(2):291–297

    Article  Google Scholar 

  • Garrison RH, Noreen EW, Brewer PC (2003) Managerial accounting. McGraw-Hill/Irwin, New York

    Google Scholar 

  • Goddard M, Hayes B (2007) Genomic selection. J Anim Breed Genet 124(6):323–330

    Article  CAS  PubMed  Google Scholar 

  • Goddard ME, Hayes BJ (2009) Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nat Rev Genet 10(6):381–391

    Article  CAS  PubMed  Google Scholar 

  • Goldringer I, Enjalbert J, Raquin A-L, Brabant P (2001) Strong selection in wheat populations during ten generations of dynamic management. Genet Select Evol 33:S441–S463

    Google Scholar 

  • Gomaa NH, Montesinos-Navarro A, Alonso-Blanco C, Pico FX (2011) Temporal variation in genetic diversity and effective population size of Mediterranean and subalpine Arabidopsis thaliana populations. Mol Ecol 20(17):3540–3554

    PubMed  Google Scholar 

  • Grattapaglia D, Resende MD (2011) Genomic selection in forest tree breeding. Tree Genet Genomes 7(2):241–255

    Article  Google Scholar 

  • Grattapaglia D, Plomion C, Kirst M, Sederoff RR (2009) Genomics of growth traits in forest trees. Curr Opin Plant Biol 12(2):148–156

    Article  CAS  PubMed  Google Scholar 

  • Guo Z, Tucker DM, Lu J, Kishore V, Gay G (2012) Evaluation of genome-wide selection efficiency in maize nested association mapping populations. Theor Appl Genet 124(2):261–275

    Article  PubMed  Google Scholar 

  • Gupta S, Pandey-Rai S, Srivastava S, Naithani SC, Prasad M, Kumar S (2007) Construction of genetic linkage map of the medicinal and ornamental plant Catharanthus roseus. J Genet 86 (3):259-268

  • Hayes B, Goddard M (2010) Genome-wide association and genomic selection in animal breeding. Genome 53(11):876–883

    Article  CAS  PubMed  Google Scholar 

  • Heffner EL, Lorenz AJ, Jannink J-L, Sorrells ME (2010) Plant breeding with genomic selection: gain per unit time and cost. Crop Sci 50(5):1681–1690

    Article  Google Scholar 

  • Heffner EL, Jannink J-L, Iwata H, Souza E, Sorrells ME (2011a) Genomic selection accuracy for grain quality traits in biparental wheat populations. Crop Sci 51(6):2597–2606

    Article  Google Scholar 

  • Heffner EL, Jannink J-L, Sorrells ME (2011b) Genomic selection accuracy using multifamily prediction models in a wheat breeding program. Plant Genome 4(1):65–75

    Article  Google Scholar 

  • Hirschhorn JN, Daly MJ (2005) Genome-wide association studies for common diseases and complex traits. Nat Rev Genet 6(2):95–108

    Article  CAS  PubMed  Google Scholar 

  • Husband BC, Barrett SC (1992) Effective population size and genetic drift in tristylous Eichhornia paniculata (Pontederiaceae). Evolution 1:1875–1890

    Article  Google Scholar 

  • Jannink J-L, Lorenz AJ, Iwata H (2010) Genomic selection in plant breeding: from theory to practice. Brief Func Genomics 9(2):166–177

    Article  CAS  Google Scholar 

  • Jumbo M, Weldekidan T, Holland JB, Hawk JA (2011) Comparison of conventional, modified single seed descent, and doubled haploid breeding methods for maize inbred line development using germplasm enhancement of maize breeding crosses. Crop Sci 51(4):1534–1543

    Article  Google Scholar 

  • Juster FT, Stafford FP (1991) The allocation of time: empirical findings, behavioral models, and problems of measurement. J Econ Lit 29:471–522

    Google Scholar 

  • Kaplan RS (1992) Measuring manufacturing performance: a new challenge for managerial accounting research. Springer, New York

    Google Scholar 

  • Khan R, Khan H (2011) Dissection of genetic variability and heritability estimates of chickpea germplasm for various morphological markers and quantitative traits. Sarhad J Agric (Pakistan)

  • Kopecký D, Martis M, Číhalíková J, Hřibová E, Vrána J, Bartoš J (2013) Genomics of meadow fescue chromosome 4F. Plant Physiol 163:1323–1337

    Article  PubMed  PubMed Central  Google Scholar 

  • Lind RC, Arrow KJ, Corey GR, Dasgupta P, Sen AK, Stauffer T, Stiglitz JE, Stockfisch J (2013) Discounting for time and risk in energy policy. Routledge, Abingdon

    Google Scholar 

  • Lorenz AJ (2013) Resource allocation for maximizing prediction accuracy and genetic gain of genomic selection in plant breeding: a simulation experiment. G3: genesGenomes. Genetics 3:481–491

    Google Scholar 

  • Lorenz AJ, Chao S, Asoro FG, Heffner EL, Hayashi T, Iwata H, Smith KP, Sorrells ME, Jannink J-L (2011) 2 Genomic Selection in Plant Breeding: knowledge and Prospects. Adv Agron 110:77

    Article  Google Scholar 

  • Lorenzana RE, Bernardo R (2009) Accuracy of genotypic value predictions for marker-based selection in biparental plant populations. Theor Appl Genet 120(1):151–161

    Article  PubMed  Google Scholar 

  • Majidi MM, Mirlohi A, Amini F (2009) Genetic variation, heritability and correlations of agro-morphological traits in tall fescue (Festuca arundinacea Schreb.). Euphytica 167(3):323–331

    Article  Google Scholar 

  • Marinković R, Jocković M, Marjanović-Jeromela A, Atlagić J, Miladinović D, Radić V Application of different methods in the determination of heritability of some quantitative traits in the sunflower (Helianthus annuus L.) sinthetic NS-S-1. In: Proceedings of the 18th sunflower international conference, February, 2012. pp 669–673

  • McConnell KE, Strand I (1981) Measuring the cost of time in recreation demand analysis: an application to sportfishing. Am J Agric Econ 63(1):153–156

    Article  Google Scholar 

  • Meuwissen T (2012) The accuracy of genomic selection. 15th European Assoc. Plant Breed Res (EUCARPIA) Biometrics in Plant Breed Section Mtg:5-7

  • Meuwissen T, Hayes B, Goddard M (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157 (4):1819

  • Palstra FP, Fraser DJ (2012) Effective/census population size ratio estimation: a compendium and appraisal. Ecol Evol 2(9):2357–2365

    Article  PubMed  PubMed Central  Google Scholar 

  • Piepho H-P, Möhring J (2007) Computing heritability and selection response from unbalanced plant breeding trials. Genetics 177(3):1881–1888

    Article  PubMed  PubMed Central  Google Scholar 

  • Renaut S, Grassa CJ, Yeaman S, Moyers BT, Lai Z, Kane NC, Bowers JE, Burke JM, Rieseberg LH (2013) Genomic islands of divergence are not affected by geography of speciation in sunflowers. Nat Commun 4:1827. doi:10.1038/ncomms2833

    Article  CAS  PubMed  Google Scholar 

  • Resende MF, Muñoz P, Resende MD, Garrick DJ, Fernando RL, Davis JM, Jokela EJ, Martin TA, Peter GF, Kirst M (2012) Accuracy of genomic selection methods in a standard data set of loblolly pine (Pinus taeda L.). Genetics 190(4):1503–1510

    Article  PubMed  PubMed Central  Google Scholar 

  • Ribaut J-M, Ragot M (2007) Marker-assisted selection to improve drought adaptation in maize: the backcross approach, perspectives, limitations, and alternatives. J Exp Bot 58(2):351–360

    Article  CAS  PubMed  Google Scholar 

  • Riedelsheimer C, Melchinger AE (2013) Optimizing the allocation of resources for genomic selection in one breeding cycle. Theor Appl Genet 126(11):2835–2848

    Article  CAS  PubMed  Google Scholar 

  • Sharma V, Chaudhary S, Srivastava S, Pandey R, Kumar S (2012) Characterization of variation and quantitative trait loci related to terpenoid indole alkaloid yield in a recombinant inbred line mapping population of Catharanthus roseus. J Genet 91(1):49–69

    Article  CAS  PubMed  Google Scholar 

  • Silva CA, Abreu ÂdFB, Ramalho MAP, Maia LGS (2012) Chemical composition as related to seed color of common bean. Crop Breed Appl Biotechnol 12(2):132–137

    Article  CAS  Google Scholar 

  • Siol M, Bonnin I, Olivieri I, Prosperi J, Ronfort J (2007) Effective population size associated with self fertilization: lessons from temporal changes in allele frequencies in the selfing annual Medicago truncatula. J Evol Biol 20(6):2349–2360

    Article  CAS  PubMed  Google Scholar 

  • Tanksley S, Ganal M, Prince J, De Vicente M, Bonierbale M, Broun P, Fulton T, Giovannoni J, Grandillo S, Martin G (1992) High density molecular linkage maps of the tomato and potato genomes. Genetics 132(4):1141–1160

    CAS  PubMed  PubMed Central  Google Scholar 

  • Welz H, Schechert A, Pernet A, Pixley K, Geiger H (1998) A gene for resistance to the maize streak virus in the African CIMMYT maize inbred line CML202. Mol Breed 4(2):147–154

    Article  CAS  Google Scholar 

  • Wientjes YC, Veerkamp RF, Calus MP (2013) The effect of linkage disequilibrium and family relationships on the reliability of genomic prediction. Genetics 193(2):621–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willcox M, Khairallah M, Bergvinson D, Crossa J, Deutsch J, Edmeades G, González-de-León D, Jiang C, Jewell D, Mihm J (2002) Selection for resistance to southwestern corn borer using marker-assisted and conventional backcrossing. Crop Sci 42(5):1516–1528

    Article  Google Scholar 

  • Winter P, Benko-Iseppon A-M, Hüttel B, Ratnaparkhe M, Tullu A, Sonnante G, Pfaff T, Tekeoglu M, Santra D, Sant V (2000) A linkage map of the chickpea (Cicer arietinum L.) genome based on recombinant inbred lines from a C. arietinum × C. reticulatum cross: localization of resistance genes for fusarium wilt races 4 and 5. Theor Appl Genet 101(7):1155–1163

    Article  CAS  Google Scholar 

  • Wong C, Bernardo R (2008) Genomewide selection in oil palm: increasing selection gain per unit time and cost with small populations. Theor Appl Genet 116(6):815–824

    Article  CAS  PubMed  Google Scholar 

  • Zhong S, Dekkers JC, Fernando RL, Jannink J-L (2009) Factors affecting accuracy from genomic selection in populations derived from multiple inbred lines: a barley case study. Genetics 182(1):355–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Funding for this research was provided by the Ontario Ministry of Research and Innovation, Ontario Research Fund: Research Excellence program. We are also grateful to the anonymous reviewer whose comments greatly improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Predrag Rajsic.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

This research did not involve any experiments.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 17 kb)

Appendices

Appendix 1

First and second partial derivatives of the squared prediction accuracy function (\(r_{{jN_{j} }}^{2}\)) with respect to the size of the training population, N j heritability, \(h_{j}^{2}\), and the effective numbers of chromosome segments, M.

Since we are interested only in the signs of the derivatives, for simplicity, we use \(r_{{jN_{j} }}^{2}\) rather than \(r_{{jN_{j} }}\) to derive the first and second derivatives. \(r_{{jN_{j} }}^{2}\) is a monotonically increasing transformation of \(r_{{jN_{j} }}\), so the signs of the first derivatives of the two function are the same. If the second derivative of \(r_{{jN_{j} }}^{2}\) is negative, the second derivative of \(r_{{jN_{j} }}\) must also be negative. Only in the case of a positive second derivative of \(r_{{jN_{j} }}^{2}\) the sign of the second derivative of \(r_{{jN_{j} }}\) could not be determined using this method, but none of the second derivatives of \(r_{{jN_{j} }}^{2}\) are positive.  

$$\frac{{\partial r_{{jN_{j} }}^{2} }}{{\partial N_{j} }} = \frac{{h_{j}^{2} \left( {N_{j} h_{j}^{2} + M} \right) - N_{j} h_{j}^{4} }}{{\left( {N_{j} h_{j}^{2} + M} \right)^{2} }} = \frac{{h_{j}^{2} M}}{{\left( {N_{j} h_{j}^{2} + M} \right)^{2} }} > 0.$$
$$\frac{{\partial r_{{jN_{j} }}^{2} }}{{\partial^{2} N_{j} }} = \frac{{2M\left( {N_{j} h_{j}^{2} + M} \right)}}{{\left( {N_{j} h_{j}^{2} + M} \right)^{3} }} < 0$$
$$\frac{{\partial r_{{jN_{j} }}^{2} }}{{\partial h_{j}^{2} }} = \frac{{N_{j} \left( {N_{j} h_{j}^{2} + M} \right) - N_{j}^{2} h_{j}^{2} }}{{\left( {N_{j} h_{j}^{2} + M} \right)^{2} }} = \frac{{N_{j} M}}{{\left( {N_{j} h_{j}^{2} + M} \right)^{2} }} > 0$$
$$\frac{{\partial r_{{jN_{j} }}^{2} }}{{\partial^{2} h_{j}^{2} }} = \frac{{2M\left( {N_{j} h_{j}^{2} + M} \right)}}{{\left( {N_{j} h_{j}^{2} + M} \right)^{3} }} < 0$$
$$\frac{{\partial r_{{jN_{j} }}^{2} }}{\partial M} = \frac{1}{{\left( {N_{j} h_{j}^{2} + M} \right)^{2} }} < 0$$
$$\frac{{\partial r_{{jN_{j} }}^{2} }}{{\partial^{2} M}} = \frac{1}{{2\left( {N_{j} h_{j}^{2} + M} \right)^{3} }} > 0$$

Prediction accuracy increases with \(N_{j}\), but at a decreasing rate. This further implies diminishing returns (in terms of genetic gain) to the size of the training population. Similar to the size of the training population, the first and second derivatives of \(r_{{jN_{j} }}^{2}\) with respect to \(h_{j}^{2}\) suggest that the genetic gain response function increases at a decreasing rate with trait heritability. On the other hand, genetic gain falls at a decreasing rate as \(M\) increases.

Appendix 2: Derivation of the optimal training population size (\(N_{{Opt_{j} }}\))

Simplifying notation:

$$N_{j} = N$$
$$C_{{p_{j} }} = a$$
$$C_{{p_{j} }} N_{T} = b$$
$$S_{{b_{j} }} = c$$
$$h_{j}^{4} = d$$
$$h_{j}^{2} = e$$
$$M = g$$

Direct link to the derivation: http://www.derivative-calculator.net/#expr = sqrt%283%2F2%29%2A%28a%2An%2Bb%29%2F%28c%2Asqrt%28n%2Ad%2F%28e%2An%2Bg%29%29%29&diffvar = n&simplify = 1&showsteps = 1

$$\frac{\partial }{\partial n}f\left( {a,b,c,d,e,g,N} \right) = \frac{\partial }{\partial N}\left( {\frac{{\sqrt 3 \left( {aN + b} \right)}}{{\sqrt 2 c\sqrt {\frac{dN}{eN + g}} }}} \right) = \frac{{\sqrt 3 \frac{\partial }{\partial N}\left( {\frac{aN + b}{{\sqrt {\frac{dN}{eN + g}} }}} \right)}}{\sqrt 2 c}$$
$$= \frac{{\sqrt 3 \frac{{\sqrt {\frac{dN}{eN + g}} \frac{\partial }{\partial N}\left( {aN + b} \right) - \frac{\partial }{\partial N}\left( {\sqrt {\frac{dN}{eN + g}} } \right)\left( {aN + b} \right)}}{{\frac{dN}{eN + g}}}}}{\sqrt 2 c}$$
$$= \frac{{\sqrt 3 \left( {eN + g} \right)\left( {a\sqrt {\frac{dN}{eN + g}} - \frac{1}{{2\sqrt {\frac{dN}{eN + g}} }}\frac{\partial }{\partial N}\left( {\frac{dN}{eN + g}} \right)\left( {aN + b} \right)} \right)}}{\sqrt 2 cdN}$$
$$= \frac{{\sqrt 3 \left( {eN + g} \right)\left( {a\sqrt {\frac{dN}{eN + g}} - \frac{{d\frac{\partial }{\partial N}\left( {\frac{N}{eN + g}} \right)\left( {aN + b} \right)}}{{2\sqrt {\frac{dN}{eN + g}} }}} \right)}}{\sqrt 2 cdN}$$
$$= \frac{{\sqrt 3 \left( {eN + g} \right)\left( {a\sqrt {\frac{dN}{eN + g}} - \frac{{d\frac{{\left( {eN + g} \right)\frac{\partial }{\partial N}\left( N \right) - \frac{\partial }{\partial N}\left( {eN + g} \right)N}}{{\left( {eN + g} \right)^{2} }}\left( {aN + b} \right)}}{{2\sqrt {\frac{dN}{eN + g}} }}} \right)}}{\sqrt 2 cdN}$$
$$= \frac{{\sqrt 3 \left( {eN + g} \right)\left( {a\sqrt {\frac{dN}{eN + g}} - \frac{{d\left( {aN + b} \right)\left( {1\left( {eN + g} \right) - eN} \right)}}{{2\left( {eN + g} \right)^{2} \sqrt {\frac{dN}{eN + g}} }}} \right)}}{\sqrt 2 cdN}$$
$$= \frac{{\sqrt 3 \left( {eN + g} \right)\left( {a\sqrt {\frac{dN}{eN + g}} - \frac{{dg\left( {aN + b} \right)}}{{2\left( {eN + g} \right)^{2} \sqrt {\frac{dN}{eN + g}} }}} \right)}}{\sqrt 2 cdN}$$
$$= \frac{{\sqrt 3 d\left( {2eaN^{2} + agN - bg} \right)}}{{2^{{\frac{3}{2}}} c(eN + g)^{2} \left( {\frac{dN}{eN + g}} \right)^{{\frac{3}{2}}} }}$$

The optimal N is subject to

$$\frac{\partial }{\partial N}f\left( {a,b,c,d,e,g,N} \right) = 0 .$$

or

$$\,2aeN^{2} + agN - bg = 0.$$

which implies solutions for the quadratic equation

$$\, N_{1,2} = \frac{{ - ag \pm \sqrt {a^{2} g^{2} - 8aebg} }}{4ae}.$$

or

$$N_{{Opt_{j} }} \frac{{ - C_{{p_{j} }} M + \sqrt {C_{{p_{j} }}^{2} M^{2} + 8C_{{p_{j} }} C_{{g_{j} }} h_{j}^{2} MN_{T} } }}{{4C_{{p_{j} }} h_{j}^{2} }}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajsic, P., Weersink, A., Navabi, A. et al. Economics of genomic selection: the role of prediction accuracy and relative genotyping costs. Euphytica 210, 259–276 (2016). https://doi.org/10.1007/s10681-016-1716-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-016-1716-0

Keywords

Navigation