A model based on S-allele dominance relationships to explain pseudo self-fertility of varieties in the olive tree

Abstract

Self-fertility is largely decreased and even prevented by various mechanisms because, broadly, it causes inbreeding depression, although some species have retained self-reproduction regimes. Species of plants that display the self-incompatible sporophytic type of self-incompatibility may rarely self-pollinate. It is only possible in the absence of foreign compatible pollen. In the olive tree with a sporophytic mechanism, we will show that three co-dominant S-alleles R1, R3 and R5 do not lead to the same level of self-fertility. All varieties that carry R1 are less self-fertile than those that carry R5, whatever the other S-alleles, while those carrying R3 are intermediate. S-allele pair-wise combinations that differ by two or three levels of dominance, and not the other combinations allow self-fertility, and moreover each S-allele R1, R3 and R5 decreases, maintains and enhances the self-fertility rate, respectively.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Alba V, Bisignano V, Alba E, Stradis A, Polignano G (2011) Effects of cryopreservation on germinability of olive (Olea europaea L.) pollen. Genet Res Crop Evol 58:977–982

    Article  Google Scholar 

  2. Al-Darwish M, Ibrahem A, Kattmah G (2012) Self incompatibility and sex expression of some local and imported olive cultivars in Lattakia-Syria. Jordan J Agric Sci 8:665–675

    Google Scholar 

  3. Bellini E, Giordani E, Rosati A (2008) Genetic improvement of olive from clonal selection to cross-breeding programs. Adv Hortic Sci 22:73–86

    Google Scholar 

  4. Besnard G, Baradat P, Bervillé AJ (2001) Genetic relationships in the olive (Olea europaea L.) reflect multilocal selection of cultivars. Theor Appl Genet 102:251–258

    CAS  Article  Google Scholar 

  5. Bradley MV, Griggs WHL (1963) Morphological evidence of incompatibility in Olea europaea. Phytomorphology 13:141–156

    Google Scholar 

  6. Breton CM, Bervillé A (2012) New hypothesis elucidates self-incompatibility in the olive tree regarding S-alleles dominance relationships as in the sporophytic model. C R Biol 335:563–572

    CAS  Article  PubMed  Google Scholar 

  7. Breton CM, Tersac M, Bervillé AJ (2006) Genetic diversity and gene flow between the wild olive (oleaster, Olea europaea L.) and the olive: several Plio-Pleistocene refuge zones in the Mediterranean basin suggested by simple sequence repeats analysis. J Biogeogr 33:1916–1928

    Article  Google Scholar 

  8. Breton CM, Farinelli D, Shafiq S, Heslop-Harrison JS, Sedgley M, Bervillé AJ (2014) The self-incompatibility mating system of the olive (Olea europaea L.) functions with dominance between S-alleles. Tree Genet Genomes 10:1055–1067

    Article  Google Scholar 

  9. Farinelli D, Breton CM, Famiani F, Bervillé AJ (2015) Specific features in the model of olive self-incompatibility system: method to decipher S-allele pairs for varieties spread worldwide. Sci Hortic 181:62–75

    Article  Google Scholar 

  10. Gerstel DU (1950) Self-incompatibility studies in Guayule II. Inheritance. Genetics 35:482–506

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Gibbs PE (2014) Late-acting self-incompatibility—the pariah breeding system in flowering plants. New Phytol 203(3):717–734. doi:10.1111/nph.12874

    Article  PubMed  Google Scholar 

  12. Hampson CR, Azarenko AN, Soeldner AI (1993) A pollen-stigma interactions following compatible and incompatible pollinations in Hazelnut. J Am Soc Hortic Sci 118:814–819

    Google Scholar 

  13. Hiscock SJ, Mc Innis SM, Tabah DA, Henderson CA, Brennan AC (2002) Sporophytic self-incompatibility in Senecio squalidus L. (Asteraceae)—the search for S. J Exp Bot 54:169–174

    Article  Google Scholar 

  14. Koelling VA, Karoly K (2007) Self-pollen interference is absent in wild radish (Raphanus Raphanistrum, Brassicaceae), a species with sporophytic self-incompatibility. Am J Bot 94:896–900

    Article  PubMed  Google Scholar 

  15. Koubouris G-C, Breton CM, Metzidakis IT, Vasilakakis MD (2014) Self-incompatibility and pollination relationships for four Greek olive cultivars. Sci Hortic. doi:10.1016/j.scienta.2014.06.043

    Google Scholar 

  16. Lavee S, Rallo L, Rapoport HF, Troncoso A (1999) The floral biology of the olive II. The effect of inflorescence load and distribution per shoot on fruit set and load. Sci Hortic 82:181–192

    Article  Google Scholar 

  17. Levin DA (1996) The evolutionary significance of pseudo-self-fertility. Am Nat 148:321–332

    Article  Google Scholar 

  18. Lloyd DG, Schoen DJ (1992) Self- and cross-fertilization in plants. I. Functional dimensions. Int J Plant Sci 153:358–369

    Article  Google Scholar 

  19. Marchese A, Marra FP, Costa F, Quartararo A, Fretto S, Caruso T (2016) An investigation of the self- and inter-incompatibility of the olive cultivars ‘Arbequina’ and ‘Koroneiki’ in the Mediterranean climate of Sicily. Aust J Crop Sci 10(1):88–93

    Google Scholar 

  20. Mehlenbacher SA, Thompson MM (1988) Dominance relationships among S-alleles in Corylus avellana L. Theor Appl Genet 76:669–672

    CAS  Article  PubMed  Google Scholar 

  21. Moutier N, Terrien E, Pécout R, Hostalnou E, Margier J-F (2006) Un groupe d’étude des compatibilités polliniques entre variétés d’olivier. Le Nouvel Olivier 51:8–11

    Google Scholar 

  22. Nooryazdan H, Serieys H, David J, Bacilieri R, Bervillé A (2010) Construction of a crop—wild hybrid population for broadening genetic diversity in cultivated sunflower and first evaluation of its combining ability: the concept of neodomestication. Euphytica. doi:10.1007/s10681-010-0281-1

    Google Scholar 

  23. Ockendon DJ, Currah L (1978) Time of cross- and self-pollination affects the amount of self-seed set by partially self-incompatible plants of Brassica oleracea. Theor Appl Genet 52:233–237

    CAS  Article  PubMed  Google Scholar 

  24. Oloumi H, Rezanejhad F (2009) Response of pollen tube growth and seed set to controlled pollination and their relation to self-incompatibility in different cultivars of Petunia hybrida. Grana 48:102–108. doi:10.1080/00173130902850458

    Article  Google Scholar 

  25. Ruby J (1918) Recherches morphologiques et biologiques sur l’olivier et sur ses variétés cultivées en France. Éd. Masson, 286 p, Paris

  26. Spinardi A, Bassi D (2012) Olive fertility as affected by cross-pollination and boron. Sci World J. Article ID 375631. doi:10.1100/2012/375631

  27. Villemur P, Musho U-S, Delmas JM, Maamar M, Ouksili A (1984) Contribution à l’étude de la biologie florale de l’olivier (Olea europaea L.): stérilité mâle, flux pollinique et période effective de pollinisation. Fruits 39:467–473

    Google Scholar 

  28. Vuletin-Selak G, Perica S, Goreta Ban S, Radunic M, Poljak M (2011) Reproductive success following self-pollination and cross-pollination of olive cultivars in Croatia. HortScience 46:186–191

    Google Scholar 

  29. Vuletin-Selak G, Cuevas J, Goreta Ban S, Pinillos V, Dumicic G, Perica S (2014) The effect of temperature on the duration of the effective pollination period in ‘Oblica’ olive (Olea europaea) cultivar. Ann Appl Biol 164:85–94. doi:10.1111/aab.12082

    Article  Google Scholar 

  30. Wu S-B, Collins G, Sedgley M (2002) Sexual compatibility within and between olive varieties. J Hortic Sci Biotechnol 77:665–673

    Article  Google Scholar 

  31. Zapata TR, Arroyo MTK (1978) Plant reproductive ecology of a secondary deciduous tropical forest in Venezuela. Biotropica 10:221–230

    Article  Google Scholar 

Download references

Acknowledgments

We would thanks Raymond Gimilio, Pierre Villemur, Reviewers and olive growers for their help in shaping this model. We are Indebted to Gery Bertaux for English improvements.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Catherine Marie Breton.

Ethics declarations

Conflict of interest

The Authors declare no conflict of interest.

Additional information

Catherine Marie Breton and Daniela Farinelli shared equal contribution to this work.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Breton, C.M., Farinelli, D., Koubouris, G. et al. A model based on S-allele dominance relationships to explain pseudo self-fertility of varieties in the olive tree. Euphytica 210, 105–117 (2016). https://doi.org/10.1007/s10681-016-1708-0

Download citation

Keywords

  • Fruit setting
  • Mutation in S-allele
  • Olea europaea
  • Self-compatibility
  • Sporophytic self-incompatibility