Advertisement

Euphytica

, Volume 210, Issue 1, pp 105–117 | Cite as

A model based on S-allele dominance relationships to explain pseudo self-fertility of varieties in the olive tree

  • Catherine Marie BretonEmail author
  • Daniela Farinelli
  • Georgios Koubouris
  • André Bervillé
Article

Abstract

Self-fertility is largely decreased and even prevented by various mechanisms because, broadly, it causes inbreeding depression, although some species have retained self-reproduction regimes. Species of plants that display the self-incompatible sporophytic type of self-incompatibility may rarely self-pollinate. It is only possible in the absence of foreign compatible pollen. In the olive tree with a sporophytic mechanism, we will show that three co-dominant S-alleles R1, R3 and R5 do not lead to the same level of self-fertility. All varieties that carry R1 are less self-fertile than those that carry R5, whatever the other S-alleles, while those carrying R3 are intermediate. S-allele pair-wise combinations that differ by two or three levels of dominance, and not the other combinations allow self-fertility, and moreover each S-allele R1, R3 and R5 decreases, maintains and enhances the self-fertility rate, respectively.

Keywords

Fruit setting Mutation in S-allele Olea europaeSelf-compatibility Sporophytic self-incompatibility 

Notes

Acknowledgments

We would thanks Raymond Gimilio, Pierre Villemur, Reviewers and olive growers for their help in shaping this model. We are Indebted to Gery Bertaux for English improvements.

Compliance with ethical standards

Conflict of interest

The Authors declare no conflict of interest.

References

  1. Alba V, Bisignano V, Alba E, Stradis A, Polignano G (2011) Effects of cryopreservation on germinability of olive (Olea europaea L.) pollen. Genet Res Crop Evol 58:977–982CrossRefGoogle Scholar
  2. Al-Darwish M, Ibrahem A, Kattmah G (2012) Self incompatibility and sex expression of some local and imported olive cultivars in Lattakia-Syria. Jordan J Agric Sci 8:665–675Google Scholar
  3. Bellini E, Giordani E, Rosati A (2008) Genetic improvement of olive from clonal selection to cross-breeding programs. Adv Hortic Sci 22:73–86Google Scholar
  4. Besnard G, Baradat P, Bervillé AJ (2001) Genetic relationships in the olive (Olea europaea L.) reflect multilocal selection of cultivars. Theor Appl Genet 102:251–258CrossRefGoogle Scholar
  5. Bradley MV, Griggs WHL (1963) Morphological evidence of incompatibility in Olea europaea. Phytomorphology 13:141–156Google Scholar
  6. Breton CM, Bervillé A (2012) New hypothesis elucidates self-incompatibility in the olive tree regarding S-alleles dominance relationships as in the sporophytic model. C R Biol 335:563–572CrossRefPubMedGoogle Scholar
  7. Breton CM, Tersac M, Bervillé AJ (2006) Genetic diversity and gene flow between the wild olive (oleaster, Olea europaea L.) and the olive: several Plio-Pleistocene refuge zones in the Mediterranean basin suggested by simple sequence repeats analysis. J Biogeogr 33:1916–1928CrossRefGoogle Scholar
  8. Breton CM, Farinelli D, Shafiq S, Heslop-Harrison JS, Sedgley M, Bervillé AJ (2014) The self-incompatibility mating system of the olive (Olea europaea L.) functions with dominance between S-alleles. Tree Genet Genomes 10:1055–1067CrossRefGoogle Scholar
  9. Farinelli D, Breton CM, Famiani F, Bervillé AJ (2015) Specific features in the model of olive self-incompatibility system: method to decipher S-allele pairs for varieties spread worldwide. Sci Hortic 181:62–75CrossRefGoogle Scholar
  10. Gerstel DU (1950) Self-incompatibility studies in Guayule II. Inheritance. Genetics 35:482–506PubMedPubMedCentralGoogle Scholar
  11. Gibbs PE (2014) Late-acting self-incompatibility—the pariah breeding system in flowering plants. New Phytol 203(3):717–734. doi: 10.1111/nph.12874 CrossRefPubMedGoogle Scholar
  12. Hampson CR, Azarenko AN, Soeldner AI (1993) A pollen-stigma interactions following compatible and incompatible pollinations in Hazelnut. J Am Soc Hortic Sci 118:814–819Google Scholar
  13. Hiscock SJ, Mc Innis SM, Tabah DA, Henderson CA, Brennan AC (2002) Sporophytic self-incompatibility in Senecio squalidus L. (Asteraceae)—the search for S. J Exp Bot 54:169–174CrossRefGoogle Scholar
  14. Koelling VA, Karoly K (2007) Self-pollen interference is absent in wild radish (Raphanus Raphanistrum, Brassicaceae), a species with sporophytic self-incompatibility. Am J Bot 94:896–900CrossRefPubMedGoogle Scholar
  15. Koubouris G-C, Breton CM, Metzidakis IT, Vasilakakis MD (2014) Self-incompatibility and pollination relationships for four Greek olive cultivars. Sci Hortic. doi: 10.1016/j.scienta.2014.06.043 Google Scholar
  16. Lavee S, Rallo L, Rapoport HF, Troncoso A (1999) The floral biology of the olive II. The effect of inflorescence load and distribution per shoot on fruit set and load. Sci Hortic 82:181–192CrossRefGoogle Scholar
  17. Levin DA (1996) The evolutionary significance of pseudo-self-fertility. Am Nat 148:321–332CrossRefGoogle Scholar
  18. Lloyd DG, Schoen DJ (1992) Self- and cross-fertilization in plants. I. Functional dimensions. Int J Plant Sci 153:358–369CrossRefGoogle Scholar
  19. Marchese A, Marra FP, Costa F, Quartararo A, Fretto S, Caruso T (2016) An investigation of the self- and inter-incompatibility of the olive cultivars ‘Arbequina’ and ‘Koroneiki’ in the Mediterranean climate of Sicily. Aust J Crop Sci 10(1):88–93Google Scholar
  20. Mehlenbacher SA, Thompson MM (1988) Dominance relationships among S-alleles in Corylus avellana L. Theor Appl Genet 76:669–672CrossRefPubMedGoogle Scholar
  21. Moutier N, Terrien E, Pécout R, Hostalnou E, Margier J-F (2006) Un groupe d’étude des compatibilités polliniques entre variétés d’olivier. Le Nouvel Olivier 51:8–11Google Scholar
  22. Nooryazdan H, Serieys H, David J, Bacilieri R, Bervillé A (2010) Construction of a crop—wild hybrid population for broadening genetic diversity in cultivated sunflower and first evaluation of its combining ability: the concept of neodomestication. Euphytica. doi: 10.1007/s10681-010-0281-1 Google Scholar
  23. Ockendon DJ, Currah L (1978) Time of cross- and self-pollination affects the amount of self-seed set by partially self-incompatible plants of Brassica oleracea. Theor Appl Genet 52:233–237CrossRefPubMedGoogle Scholar
  24. Oloumi H, Rezanejhad F (2009) Response of pollen tube growth and seed set to controlled pollination and their relation to self-incompatibility in different cultivars of Petunia hybrida. Grana 48:102–108. doi: 10.1080/00173130902850458 CrossRefGoogle Scholar
  25. Ruby J (1918) Recherches morphologiques et biologiques sur l’olivier et sur ses variétés cultivées en France. Éd. Masson, 286 p, ParisGoogle Scholar
  26. Spinardi A, Bassi D (2012) Olive fertility as affected by cross-pollination and boron. Sci World J. Article ID 375631. doi: 10.1100/2012/375631
  27. Villemur P, Musho U-S, Delmas JM, Maamar M, Ouksili A (1984) Contribution à l’étude de la biologie florale de l’olivier (Olea europaea L.): stérilité mâle, flux pollinique et période effective de pollinisation. Fruits 39:467–473Google Scholar
  28. Vuletin-Selak G, Perica S, Goreta Ban S, Radunic M, Poljak M (2011) Reproductive success following self-pollination and cross-pollination of olive cultivars in Croatia. HortScience 46:186–191Google Scholar
  29. Vuletin-Selak G, Cuevas J, Goreta Ban S, Pinillos V, Dumicic G, Perica S (2014) The effect of temperature on the duration of the effective pollination period in ‘Oblica’ olive (Olea europaea) cultivar. Ann Appl Biol 164:85–94. doi: 10.1111/aab.12082 CrossRefGoogle Scholar
  30. Wu S-B, Collins G, Sedgley M (2002) Sexual compatibility within and between olive varieties. J Hortic Sci Biotechnol 77:665–673CrossRefGoogle Scholar
  31. Zapata TR, Arroyo MTK (1978) Plant reproductive ecology of a secondary deciduous tropical forest in Venezuela. Biotropica 10:221–230CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Catherine Marie Breton
    • 1
    Email author
  • Daniela Farinelli
    • 2
  • Georgios Koubouris
    • 3
  • André Bervillé
    • 4
  1. 1.Institut des Sciences de l’Evolution de Montpellier (ISE-M), UMR CNRS 5554Université de Montpellier 2Montpellier Cedex 5France
  2. 2.Dipartimento di Scienze Agrarie, Alimentari e AmbientaliUniversità degli Studi di PerugiaPerugiaItaly
  3. 3.Institute for Olive Tree, Subtropical Plants and ViticultureN.AG.RE.F., ELGO DEMETERChaniaGreece
  4. 4.INRA, UMR DIAPC 1097Montpellier Cedex 2France

Personalised recommendations