Skip to main content

Advertisement

Log in

Mapping genes for resistance to bacterial blight (Pseudomonas syringae pv. pisi) in pea and identification of genes involved in resistance by DeepsuperSAGE transcriptome profiling

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Bacterial blight caused by Pseudomonas syringae pv. pisi is an important disease of pea (Pisum sativum L.). Knowledge about the genes or mechanisms acting against this pathogen is scarce. A genetic mapping study of the resistance was performed using a recombinant inbred line mapping population generated by crossing the susceptible cultivar Cheyenne to the resistant line ZP0104. Resistance to race 2 was a dominant monogenic trait mapped at 109.4 cM on LGVII between AB114 and AB122 simple sequence repeat markers. It is assumed to be the previously Ppi2 based on its location. Resistance to races 4 and 8 behaved also as dominant monogenic traits and presumably due to a single gene conferring resistance to both races. It was mapped on LGIII at 11.2 cM of the AD57 microsatellite marker. This gene has been named Ppi8 and it is proposed as a new resistance gene. Ppi8 and Ppi2 are associated to the pea consensus map for the first time. To identify genes related to resistance and susceptibility, a DeepSuperSAGE genome-wide transcription profiling approach was conducted producing 45,261 different pea unitags. A set of 651 unitags were differently represented in the susceptible versus the resistant response with a significance of P < 0.001 and a fold change >4. These putative differentially expressed set includes genes previously related to responses to biotic stresses (pathogenesis-related or related to disease resistance responses), abiotic stresses or of unknown function, among other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Abuqamar S, Ajeb S, Sham A, Enan MR, Iratni R (2013) A mutation in the expansin-like A2 gene enhances resistance to necrotrophic fungi and hypersensitivity to abiotic stress in Arabidopsis thaliana. Mol Plant Pathol 14:813–827

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 63:3523–3544

    Article  CAS  PubMed  Google Scholar 

  • Audic S, Claverie JM (1997) The significance of digital gene expression profiles. Genome Res 7:986–995

    CAS  PubMed  Google Scholar 

  • Bevan JR, Taylor JD, Crute IR, Hunter PJ, Vivian A (1995) Genetics of specific resistance in pea (Pisum sativum) cultivars to seven races of Pseudomonas syringae pv. pisi. Plant Pathol 44:98–108

    Article  Google Scholar 

  • Bienert MD, Siegmund SEG, Drozak A, Trombik T, Bultreys A, Baldwin IT, Boutry M (2012) A pleiotropic drug resistance transporter in Nicotiana tabacum is involved in defense against the herbivore Manduca sexta. Plant J 72:745–757

    Article  CAS  PubMed  Google Scholar 

  • Bordat A, Savois V, Nicolas M, Salse J, Chauveau A, Bourgeois M, Potier J, Houtin H, Rond C, Murat F, Marget P, Aubert G, Burstin J (2011) Translational genomics in legumes allowed placing in silico 5460 unigenes on the pea functional map and identified candidate genes in Pisum sativum L. G3 Genes Genom Genet 1:93–103

    CAS  Google Scholar 

  • Camps C, Kappel C, Lecomte P, Léon C, Coutos-Thévenot P, Delrot S, Gomès E (2014) Identification of grapevine marker genes for early, non-destructive Eutypa lata infection diagnosis. Plant Pathol 63:323–333

    Article  CAS  Google Scholar 

  • De Givry S, Bouchez M, Chabrier P, Milan D, Schiex T (2005) CAR(H)(T)AGene: multipopulation integrated genetic and radiation hybrid mapping. Bioinformatics 21:1703–1704

    Article  PubMed  Google Scholar 

  • Derksen H, Rampitsch C, Daayf F (2013) Signaling cross-talk in plant disease resistance. Plant Sci 207:79–87

    Article  CAS  PubMed  Google Scholar 

  • Duarte J, Rivière N, Barabger A, Aubert G, Burstin J, Cornet L, Clément L, Lejeune-Hénaut I, Martinant JP, Pichon JP, Pilet-Nayel ML, Boutet G (2014) Transcriptome sequencing for high throughput SNP development and genetic mapping in pea. BMC Genom 15:126–141

    Article  Google Scholar 

  • Elvira-Recuenco M, Bevan JR, Taylor JD (2003) Differential responses to pea bacterial blight in stems, leaves and pods under glasshouse and field conditions. Eur J Plant Pathol 109:555–564

    Article  CAS  Google Scholar 

  • Flavell AJ, Knox MR, Pearce SR, Ellis THN (1998) Retrotransposon-based insertion polymorphisms (RBIP) for high throughput marker analysis. Plant Journal 16:643–650

    Article  CAS  PubMed  Google Scholar 

  • Fondevilla S, Küster H, Krajinski F, Cubero JI, Rubiales D (2011) Identification of genes differentially expressed in a resistant reaction to Mycosphaerella pinodes in pea using microarray technology. BMC Genom 12:28

    CAS  Google Scholar 

  • Fondevilla S, Martín-Sanz A, Satovic Z, Fernández-Romero MD, Rubiales D, Caminero C (2012) Identification of quantitative trait loci involved in resistance to Pseudomonas syringae pv. syringae in pea (Pisum sativum L.). Euphytica 186:805–812

    Article  Google Scholar 

  • Fondevilla S, Rotter B, Krezdorn N, Jüngling R, Winter P, Rubiales D (2014) Identification of genes involved in resistance to Didymella pinodes in pea by deepSuperSAGE transcriptome profiling. Plant Mol Biol Rep 32:258–269

    Article  CAS  Google Scholar 

  • Genoud T, Buchala AJ, Chua N-H, Métraux JP (2002) Phytochrome signalling modulates the SA-perceptive pathway in Arabidopsis. Plant J 31:87–95

    Article  CAS  PubMed  Google Scholar 

  • Hollaway GJ, Bretag TW, Price TV (2007) The epidemiology and management of bacterial blight (Pseudomonas syringae pv. pisi) of field pea (Pisum sativum) in Australia: a review. Aust J Agric Res 58:1086–1099

    Article  Google Scholar 

  • Holloway GJ, Bretag TW (1995) Occurrence and distribution of races of Pseudomonas syringae pv. pisi in Australia and their specificity towards various field pea (Pisum sativum) cultivars. Aust J Exp Agr 35:629–632

    Article  Google Scholar 

  • Hunter PJ, Ellis N, Taylor JD (2001) Association of dominant loci for resistance to Pseudomonas syringae pv. pisi with linkage groups II, VI and VII of Pisum sativum. Theor Appl Genet 103:129–135

    Article  CAS  Google Scholar 

  • Jing R, Knox MR, Lee JM, Vershinin AV, Ambrose M, Ellis THN, Flavell AJ (2005) Insertional polymorphism and antiquity of PDR1 retrotransposon insertions in Pisum species. Genetics 171:741–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katiyar-Agarwal S, Morgan R, Dahlbeck D, Borsani O, Villegas A, Jr, Zhu JK, Staskawicz BJ, Jin H (2006) A pathogen-inducible endogenous siRNA in plant immunity. Proc Natl Acad Sci USA 103:18002–18007

  • Khraiwesh B, Zhu J-K, Zhu J (2012) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta 1819:137–148

    Article  CAS  PubMed  Google Scholar 

  • Kido EA, Ferreira-Neto JRC, Silva RLO, Belarmino LC, Bezerra-Neto JP, Soares-Cavalcanti NM, Pandolfi V, Silva MD, Nepomuceno AL, Benko-Iseppon AM (2013) Expression dynamics and genome distribution of osmoprotectants in soybean: identifying important components to face abiotic stress. BMC Bioinform 14(Suppl 1):S7

    Article  CAS  Google Scholar 

  • Kosambi DD (1944) The estimation of map distance from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Kretzschmar T, Burla B, Lee Y, Martinoia E, Nagy R (2011) Functions of ABC transporters in plants. Essays Biochem 50:145

    Article  CAS  PubMed  Google Scholar 

  • Lai F-M, De Long C, Mei K, Wignes T, Fobert PR (2002) Analysis of the DRR230 family of pea defensins: gene expression pattern and evidence of broad host-range antifungal activity. Plant Sci 163:855–864

    Article  CAS  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  CAS  PubMed  Google Scholar 

  • Lawyer AS, Chun W (2001) Foliar diseases caused by bacteria. In: Kraft JM, Pfleger FL (eds) Compendium of Pea Diseases. APS Press, St. Paul, pp 22–24

    Google Scholar 

  • Lee HJ, Kim JS, Yoo SJ, Kang EY, Han SH, Yang K-Y, Kim YC, McSpadden-Gardener B, Kang H (2012) Different roles of glycine-rich RNA-binding protein7 in plant defense against Pectobacterium carotovorum, Botrytis cinerea, and tobacco mosaic viruses. Plant Physiol Biochem 60:46–52

    Article  CAS  PubMed  Google Scholar 

  • Leonforte A, Sudheesh S, Cogan NO, Salisbury PA, Nicolas ME, Materne M, Forster JW, Kaur S (2013) SNP marker discovery, linkage map construction and identification of QTLs for enhanced salinity tolerance in field pea (Pisum sativum L.). BMC Plant Biol 13:161

    Article  PubMed  PubMed Central  Google Scholar 

  • Loridon K, McPhee K, Morin J, Dubreuil P, Pilet-Nayel ML, Aubert G, Rameau C, Baranger A, Coyne C, Lejeune-Henaut I, Burstin J (2005) Microsatellite marker polymorphism and mapping in pea (Pisum sativum L.). Theor Appl Genet 111:1022–1031

    Article  CAS  PubMed  Google Scholar 

  • Martín-Sanz A, Palomo JL, Pérez de la Vega M, Caminero C (2011) Identification of pathovars and races of Pseudomonas syringae, the main causal agent of bacterial diseases in pea in North-Central Spain, and the search for resistance. Eur J Plant Pathol 129:57–69

    Article  Google Scholar 

  • Martín-Sanz A, Pérez de la Vega M, Caminero C (2012a) Resistance to Pseudomonas syringae in a collection of pea germplasm under field and controlled conditions. Plant Pathol 61:375–387

    Article  Google Scholar 

  • Martín-Sanz A, Pérez de la Vega M, Murillo J, Caminero C (2012b) Genetic, biochemical and pathogenic diversity of Pseudomonas syringae pv. pisi strains. Plant Pathol 61:1063–1072

    Article  Google Scholar 

  • Martín-Sanz A, Pérez de la Vega M, Murillo J, Caminero C (2013) Strains of Pseudomonas syringae pv. syringae from pea are phylogenetically and pathogenically diverse. Phytopatology 103:673–681

    Article  Google Scholar 

  • Matsumura H, Reich S, Ito A, Saitoh H, Kamoun S, Winter P, Kahl G, Reuter M, Kruger DH, Terauchi R (2003) Gene expression analysis of plant host–pathogen interactions by SuperSAGE. Proc Natl Cad Sci USA 100:15718–15723

    Article  CAS  Google Scholar 

  • McDowell JM, Simon SA (2006) Recent insights into R gene evolution. Mol Plant Pathol 7:437–448

    Article  CAS  PubMed  Google Scholar 

  • Molina C, Rotter B, Horres R, Udupa SM, Besser B, Bellarmino L, Baum M, Matsumura H, Terauchi R, Kahl G, Winter P (2008) SuperSAGE: the drought stress-responsive transcriptome of chickpea roots. BMC Genom 9:553

    Article  Google Scholar 

  • Molina C, Zaman-Allah M, Khan F, Fatnassi N, Horres R, Rotter B, Steinhauer D, Amenc L, Drevon J-J, Winter P, Kahl G (2011) The salt-responsive transcriptome of chickpea roots and nodules via deepSuperSAGE. BMC Plant Biol 11:31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polanco C, González AI, de la Puente R, Somalo S, Ruíz M (2005) Cloning AFLP markers detected by fluorescence capillary electrophoresis. Plant Mol Biol Rep 23:271–277

    Article  CAS  Google Scholar 

  • Radwan O, Li M, Calla B, Li S, Hartman GL, Clough SJ (2012) Effect of Fusarium virguliforme phytotoxin on soybean gene expression suggests a role in multidimensional defence. Mol Plant Pathol 14:293–307

    Article  PubMed  Google Scholar 

  • Rapala-Kozik M, Wolak N, Kujda M, Banas AK (2012) The upregulation of thiamine (vitamin B1) biosynthesis in Arabidopsis thaliana seedlings under salt and osmotic stress conditions is mediated by abscisic acid at the early stages of this stress response. BMC Plant Biol 12:2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sindhu A, Ramsay L, Sanderson LA, Stonehouse R, Li R, Condie J, Shunmugam ASK, Liu Y, Jha AB, Diapari M, Burstin J, Aubert G, Tar’an B, Bett KE, Warkentin TD, Sharpe AG (2014) Gene-based SNP discovery and genetic mapping in pea. Theor Appl Genet 127:2225–2241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sudheesh S, Rodda M, Kennedy P, Verma P, Leonforte A, Cogan NOI, Materne M, Forster JW, Kaur S (2015) Construction of an integrated linkage map and trait dissection for bacterial blight resistance in field pea (Pisum sativum L.). Mol Breed 35:185

    Article  Google Scholar 

  • Tan K-C, Ipcho SVS, Trengove RD, Oliver RP, Solomon PS (2009) Assessing the impact of transcriptomics, proteomics and metabolomics on fungal phytopathology. Mol Plant Pathol 10:703–715

    Article  CAS  PubMed  Google Scholar 

  • Taylor JD, Bevan JR, Crute IR, Reader SL (1989) Genetic relationship between races between races of Pseudomonas syringae pv. pisi and cultivars of Pisum sativum. Plant Pathol 38:364–375

    Article  Google Scholar 

  • Trabanco N, Asensio-Manzanera MC, Pérez-Vega E, Ibeas A, Campa A, Ferreira JJ (2014) Identification of quantitative trait loci involved in the response of common bean to Pseudomonas syringae pv. phaseolicola. Mol Breed 33:577–588

    Article  CAS  Google Scholar 

  • Vicuna D, Malon RP, Philip JD (2011) Increased tolerance to abiotic stresses in tobacco plants expressing a barley cell wall peroxidase. J Plant Sci 6:1–13

    Article  CAS  Google Scholar 

  • Weising K (2005) DNA fingerprinting in plants: principles, methods, and applications, 2nd edn. Taylor & Francis Group, Boca Raton

    Book  Google Scholar 

  • Wu L, Yang H-Q (2010) CRYPTOCHROME 1 is implicated in promoting R protein-mediated plant resistance to Pseudomonas syringae in Arabidopsis. Mol Plant 3:539–548

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Xia J, Lii YE, Barrera-Figueroa BE, Zhou X, Gao S, Lu L, Niu D, Chen Z, Leung C, Wong T, Zhang H, Guo J, Li Y, Liu R, Liang W, Zhu J-K, Zhang W, Jin H (2012) Genome-wide analysis of plant nat-siRNAs reveals insights into their distribution, biogenesis and function. Genome Biol 13:R20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Sunkar R, Jin H, Zhu J-K, Zhang W (2009) RNAs originated from natural antisense transcripts in Oryza sativa. Genome Res 19:70–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou J, Rodriguez-Zas S, Aldea M, Li M, Zhu J, Gonzalez DO, Vodkin LO, DeLucia E, Clough SJ (2005) Expression profiling soybean response to Pseudomonas syringae reveals new defense-related genes and rapid HR-specific downregulation of photosynthesis. Mol Plant Microbe Interact 18:1161–1174

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was funded by Ministerio de Ciencia e Innovacción GEN2006-27798-C6-3-E/VEG and Junta de Castilla y León ITACyL 2004/845 projects. The authors thank to Dr. Rients Niks (Wageningen University, the Netherlands) for allowing the use of part of his greenhouse space to AMS when he was working with him to perform the second repetition of the phenotyping of the mapping population.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Martín-Sanz.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martín-Sanz, A., Aparicio, T., Santana, J.C. et al. Mapping genes for resistance to bacterial blight (Pseudomonas syringae pv. pisi) in pea and identification of genes involved in resistance by DeepsuperSAGE transcriptome profiling. Euphytica 210, 375–392 (2016). https://doi.org/10.1007/s10681-016-1700-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-016-1700-8

Keywords