Single and joint effect of the basal region of chromosome 2 and centromeric region of chromosome 8 on morphological and fruit quality traits in tomato

Abstract

The goal of this study was to estimate the single and joint effect of the basal region of chromosome 2 and centromeric region of chromosome 8 on morphological and fruit quality traits in tomato (Solanum lycopersicum). The analysis was performed in a population derived from a cross between Rio Grande of S. lycopersicum and LA1589 of S. pimpinellifolium that segregates for both genomic regions. Four major QTLs were found on chromosome 2 and three on chromosome 8, all of them related with morphological traits. QTLs for fruit shape index, proximal fruit end angle and distal fruit end protrusion showed epistatic interaction. Both genomic regions (fs2.1 and fs8.1) explained 62, 47 and 46 % of the phenotypic variability for fruit shape index, proximal fruit end angle and distal fruit end protrusion respectively. Minor QTLs were detected for other morphological and quality traits such as color, pH and fruit shelf life on chromosomes 2 and 8. Only single genomic region effects were found for quality trait. On the other hand, fs2.1 and fs8.1 regions control several fruit morphology attributes following a digenic linear additive model with epistatic interactions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

a/b :

Color chroma index

ANOVA:

Analysis of variance

ar :

Fruit area

BC1 :

First cycle of backcross

CAPS:

Cleaved amplified polymorphic sequences

dan20 :

Distal fruit end angle

dblk20 :

Distal fruit end blockiness

f :

Firmness

F3 :

Third filial generation

fs I :

Fruit shape index

fw :

Fruit mass

H2 :

Broad sense heritability

InDel:

Insertion/deletion

L :

Lightness color parameter

LL:

Homozygous for Rio Grande alleles

LP:

Heterozygous

pan20 :

Proximal fruit end angle

pblk20 :

Proximal fruit end blockiness

pH :

Hydrogen potential

PP:

Homozygous for LA1589 alleles

QTL:

Quantitative trait loci

S1 :

First selfed generation

sl :

Fruit shelf life

ssc :

Soluble solid content

ta :

Titratable acidity

tip :

Distal fruit end protrusion

tri20 :

Fruit shape triangle

References

  1. Bernacchi D, Beck-Bunn T, Eshed Y et al (1998) Advanced backcross QTL analysis in tomato. I. Identification of QTLs for traits of agronomic importance from Lycopersicon hirsutum. Theor Appl Genet 97:381–397. doi:10.1007/s001220050908

    CAS  Article  Google Scholar 

  2. Buescher RW, Sistrunk WA, Tigchelaar EC, Ng TJ (1976) Softening, pectolytic activity, and storage-life of rin and nor tomato hybrids. HortScience 11:603–604

    CAS  Google Scholar 

  3. Causse M, Chaïb J, Lecomte L et al (2007) Both additivity and epistasis control the genetic variation for fruit quality traits in tomato. Theor Appl Genet 115:429–442. doi:10.1007/s00122-007-0578-1

    CAS  Article  PubMed  Google Scholar 

  4. Cheverud JM, Routman EJ (1995) Epistasis and its contributions to genetic variance components. Genetics 139:1455–1461

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Di Renzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2001) Infostat, versión 2001, Grupo Infostat, FCA. Universidad Nacional de Córdoba, Argentina

  6. Frary A, Nesbitt TC, Frary A et al (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88. doi:10.1126/science.289.5476.85

    CAS  Article  PubMed  Google Scholar 

  7. Georgelis N, Scott JW, Baldwin EA (2006) Inheritance of high sugars from tomato accession PI 270248 and environmental variation between seasons. J Am Soc Hortic Sci 131:41–45

    Google Scholar 

  8. Gonzalo MJ, van der Knaap E (2008) A comparative analysis into the genetic bases of morphology in tomato varieties exhibiting elongated fruit shape. Theor Appl Genet 116:647–656. doi:10.1007/s00122-007-0698-7

    Article  PubMed  Google Scholar 

  9. Grandillo S, Tanksley SD (1996) QTL analysis of horticultural traits differentiating the cultivated tomato from the closely related species Lycopersicon pimpinellifolium. Theor Appl Genet 92:935–951. doi:10.1007/BF00224033

    CAS  Article  PubMed  Google Scholar 

  10. Grandillo S, Ku HM, Tanksley SD (1999) Identifying the loci responsible for natural variation in fruit size and shape in tomato. Theor Appl Genet 99:978–987. doi:10.1007/s001220051405

    CAS  Article  Google Scholar 

  11. Jana S (1972) Simulation of quantitative characters from qualitatively acting genes. Theor Appl Genet 42:119–124

    CAS  Article  PubMed  Google Scholar 

  12. Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc 47:583–621

    Article  Google Scholar 

  13. Ku HM, Grandillo S, Tanksley SD (2000) fs8.1, a major QTL, sets the pattern of tomato carpel shape well before anthesis. Theor Appl Genet 101:873–878

    CAS  Article  Google Scholar 

  14. Lippman ZB, Tanksley SD (2001) Dissecting the genetic pathway to extreme fruit size in tomato using a cross between the small-fruited wild species Lycopersicon pimpinellifolium and L. esculentum var. Giant Heirloom. Genetics 158:413–422

    CAS  PubMed  Google Scholar 

  15. Liu J, Van Eck J, Cong B, Tanksley SD (2002) A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proc Natl Acad Sci U S A 99:13302–13306. doi:10.1073/pnas.162485999

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Mariotti JA, Collavino NG (2014) Los caracteres cuantitativos en la mejora genética de los cultivos. Orientación Gráfica Editora, Buenos Aires

    Google Scholar 

  17. Nesbitt TC, Tanksley SD (2002) Comparative sequencing in the genus Lycopersicon : implications for the evolution of fruit size in the domestication of cultivated tomatoes. Genetics 162:365–379

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Pereira da Costa JH, Rodríguez GR, Pratta GR et al (2013) QTL detection for fruit shelf life and quality traits across segregating populations of tomato. Sci Hortic 156:47–53

    Article  Google Scholar 

  19. Pratta GR, Rodríguez GR, Zorzoli R et al (2011) Phenotypic and molecular characterization of selected tomato recombinant inbred lines derived from the cross Solanum lycopersicum × S. pimpinellifolium. J Genet 90:229–237

    Article  PubMed  Google Scholar 

  20. R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/

  21. Rodríguez GR, Pratta GR, Zorzoli R, Picardi LA (2006) Evaluación de caracteres de planta y fruto en líneas recombinantes autofecundadas de tomate obtenidas por cruzamiento entre Lycopersicon esculentum y L. pimpinellifolium. Ciencia e Investigación Agraria 33:133–141

    Google Scholar 

  22. Rodríguez GR, Pratta GR, Liberatti DR et al (2010a) Inheritance of shelf life and other quality traits of tomato fruit estimated from F1’s, F2’s and backcross generations derived from standard cultivar, nor homozygote and wild cherry tomato. Euphytica 176:137–147. doi:10.1007/s10681-010-0241-9

    Article  Google Scholar 

  23. Rodríguez GR, Strecker J, Brewer M, et al (2010b) Tomato analyzer user manual version 3

  24. Rodríguez GR, Muños S, Anderson C et al (2011) Distribution of SUN, OVATE, LC, and FAS in the tomato germplasm and the relationship to fruit shape diversity. Plant Physiol 156:275–285. doi:10.1104/pp.110.167577

    Article  PubMed  PubMed Central  Google Scholar 

  25. Saliba-Colombani V, Causse M, Langlois D et al (2001) Genetic analysis of organoleptic quality in fresh market tomato. 1. Mapping QTLs for physical and chemical traits. Theor Appl Genet 102:259–272. doi:10.1007/s001220051643

    CAS  Article  Google Scholar 

  26. Schuelter AR, Finger FL, Casali VWD et al (2002) Inheritance and genetic linkage analysis of a firm-ripening tomato mutant. Plant Breed 121:338–342

    Article  Google Scholar 

  27. Shapiro S, Wilk M (1965) An analysis of variance test for normality (complete samples). Biometrika 52:591–611

    Article  Google Scholar 

  28. Simonne AH, Bridget BK, Marshall MM (2006) Consumers prefer low-priced and high-lycopene-content fresh-market tomatoes. HortTechnology 16:674–681

    Google Scholar 

  29. Snedecor G (1964) Métodos Estadísticos, 5ta edn. Compañía Editorial, México

    Google Scholar 

  30. Sun L, Rodriguez GR, Clevenger JP et al (2015) Candidate gene selection and detailed morphological evaluations of fs8.1, a quantitative trait locus controlling tomato fruit shape. J Exp Bot. doi:10.1093/jxb/erv361

    Google Scholar 

  31. Tanksley SD (1993) Mapping polygenes. Annu Rev Genet 27:205–233. doi:10.1146/annurev.ge.27.120193.001225

    CAS  Article  PubMed  Google Scholar 

  32. Tanksley SD (2004) The genetic, developmental, and molecular bases of fruit size and shape variation in tomato. Plant Cell 16:181–189. doi:10.1105/tpc.018119.S182

    Article  Google Scholar 

  33. Xiao H, Jiang N, Schaffner E et al (2008) A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science 319:1527–1530. doi:10.1126/science.1153040

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gustavo Rubén Rodríguez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10681_2016_1689_MOESM1_ESM.jpg

Supplementary material 1 (JPEG 293 kb) Box plot for the markers with significant association and the highest % R2 in the one-way ANOVA for fruit area (ar), fruit shape index I (fs I), proximal fruit end angle (pan20, in °), dital fruit end angle (dan20, in °), and distal fruit end protrusion (tip). Abbreviations: ma ar, m fsI, m pan20, m dan20, and m tip indicates the average values of the population for each trait. a ar_fs2.1, a ar_fs8.1, a fsI_fs2.1, a fsI_fs8.1, a pan20_fs2.1, a pan20_fs8.1, a dan20_fs2.1, a dan20_fs8.1, a tip_fs2.1, and a tip_fs8.1 indicates de additive value for each trait at the genomic regions fs2.1 and f8.1 respectively. LL: homozygous for Rio Grande alleles, LP: heterozygous, PP: homozygous for LA1589 alleles

Supplementary material 2 (DOCX 17 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Green, G.Y., Pereira da Costa, J.H., Cambiaso, V. et al. Single and joint effect of the basal region of chromosome 2 and centromeric region of chromosome 8 on morphological and fruit quality traits in tomato. Euphytica 210, 327–339 (2016). https://doi.org/10.1007/s10681-016-1689-z

Download citation

Keywords

  • Epistasis
  • Fruit color
  • Fruit shape
  • fs2.1
  • fs8.1
  • Titratable acidity