Skip to main content

Advertisement

Log in

Identification of loci contributing to maize drought tolerance in a genome-wide association study

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Genome-wide association studies (GWAS) have been used widely to analyze the genetic control of complex traits in crops. In the present study, seven related phenotypic traits were analyzed in combination to study their association with 41,101 SNPs in 201 maize inbred lines that had been evaluated in seven environments (year/location combinations) under water-stressed (WS) or well-watered (WW) regimes. By comparing the association signals with a fixed P value, GWAS showed that the number of association signals identified varied among traits and in different environments. Data that were missing under the severe water stress treatment had a great impact on the results of this GWAS. A total of 206 significant SNPs were associated with 115 candidate genes for drought tolerance and related traits including final grain yield, total number of ears per plot, kernel number per row, plant height, anthesis-silking interval, days to anthesis (DtA), and days to silking (DtS). Among these, four genes were associated with at least two different related traits, and six genes associated with traits were detected in at least two environments under water stress. Nine candidate QTL identified by GWAS were also discovered, three of which co-located to a consensus QTL region meta-analyzed by linkage mapping for drought tolerance. Some regulatory genes related to abiotic stress responses might also make a strong contribution to drought tolerance. The comprehensive information presented here regarding consensus QTL combined with candidate genes derived from GWAS provides an important reference tool for improving maize drought tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agrama HAS, Moussa ME (1996) Mapping QTLs in breeding for drought tolerance in maize (Zea mays L). Euphytica 91:89–97. doi:10.1007/Bf00035278

    Article  CAS  Google Scholar 

  • Akhatar J, Banga SS (2015) Genome-wide association mapping for grain yield components and root traits in Brassica juncea (L.) Czern & Coss. Mol Breed. doi:10.1007/s11032-015-0230-8

    Google Scholar 

  • Almeida GD, Makumbi D, Magorokosho C, Nair S, Borem A, Ribaut JM, Banziger M, Prasanna BM, Crossa J, Babu R (2013) QTL mapping in three tropical maize populations reveals a set of constitutive and adaptive genomic regions for drought tolerance. Theor Appl Genet 126:583–600. doi:10.1007/s00122-012-2003-7

    Article  CAS  PubMed  Google Scholar 

  • Almeida GD, Nair S, Borem A, Cairns J, Trachsel S, Ribaut JM, Banziger M, Prasanna BM, Crossa J, Babu R (2014) Molecular mapping across three populations reveals a QTL hotspot region on chromosome 3 for secondary traits associated with drought tolerance in tropical maize. Mol Breed 34:701–715. doi:10.1007/s11032-014-0068-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atwell S, Huang YS, Vilhjalmsson BJ, Willems G, Horton M, Li Y, Meng DZ, Platt A, Tarone AM, Hu TT, Jiang R, Muliyati NW, Zhang X, Amer MA, Baxter I, Brachi B, Chory J, Dean C, Debieu M, de Meaux J, Ecker JR, Faure N, Kniskern JM, Jones JDG, Michael T, Nemri A, Roux F, Salt DE, Tang CL, Todesco M, Traw MB, Weigel D, Marjoram P, Borevitz JO, Bergelson J, Nordborg M (2010) Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465:627–631. doi:10.1038/nature08800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Babu R, Rojas NP, Gao S, Yan J, Pixley K (2012) Validation of the effects of molecular marker polymorphisms in LcyE and CrtRB1 on provitamin A concentrations for 26 tropical maize populations. Theor Appl Genet 126:389–399

    Article  PubMed  PubMed Central  Google Scholar 

  • Biradar CM, Thenkabail PS, Noojipady P, Li YJ, Dheeravath V, Turral H, Velpuri M, Gumma MK, Gangalakunta ORP, Cai XL, Xiao XM, Schull MA, Alankara RD, Gunasinghe S, Mohideen S (2009) A global map of rainfed cropland areas (GMRCA) at the end of last millennium using remote sensing. Int J Appl Earth Obs 11:114–129. doi:10.1016/j.jag.2008.11.002

    Article  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635. doi:10.1093/bioinformatics/btm308

    Article  CAS  PubMed  Google Scholar 

  • Brady ST (1995) A kinesin medley—biochemical and functional-heterogeneity. Trends Cell Biol 5:159–164. doi:10.1016/S0962-8924(00)88980-1

    Article  CAS  PubMed  Google Scholar 

  • Cabello R, Monneveux P, Bonierbale M, Khan MA (2014) Heritability of yield components under irrigated and drought conditions in andigenum potatoes. Am J Potato Res 91:492–499. doi:10.1007/s12230-014-9379-7

    Article  Google Scholar 

  • Chen L, Wang QQ, Zhou L, Ren F, Li DD, Li XB (2013) Arabidopsis CBL-interacting protein kinase (CIPK6) is involved in plant response to salt/osmotic stress and ABA. Mol Biol Rep 40:4759–4767. doi:10.1007/s11033-013-2572-9

    Article  CAS  PubMed  Google Scholar 

  • Farfan IDB, De La Fuente GN, Murray SC, Isakeit T, Huang PC, Warburton M, Williams P, Windham GL, Kolomiets M (2015) Genome wide association study for drought, aflatoxin resistance, and important agronomic traits of maize hybrids in the sub-tropics. PLoS One. doi:10.1371/journal.pone.0117737

    PubMed  PubMed Central  Google Scholar 

  • Fischer KS, International Rice Research Institute (2003) Breeding rice for drought-prone environments. IRRI, Los Baños

    Google Scholar 

  • Gajardo HA, Wittkop B, Soto-Cerda B, Higgins EE, Parkin IAP, Snowdon RJ, Federico ML, Iniguez-Luy FL (2015) Association mapping of seed quality traits in Brassica napus L. using GWAS and candidate QTL approaches. Mol Breed. doi:10.1007/S11032-015-0340-3

    Google Scholar 

  • Gomez SM, Boopathi NM, Kumar SS, Ramasubramanian T, Zhu CS, Jeyaprakash P, Senthil A, Babu RC (2010) Molecular mapping and location of QTLs for drought-resistance traits in indica rice (Oryza sativa L.) lines adapted to target environments. Acta Physiol Plant 32:355–364. doi:10.1007/s11738-009-0413-1

    Article  Google Scholar 

  • Gore MA, Chia JM, Elshire RJ, Sun Q, Ersoz ES, Hurwitz BL, Peiffer JA, McMullen MD, Grills GS, Ross-Ibarra J, Ware DH, Buckler ES (2009) A first-generation haplotype map of maize. Science 326:1115–1117. doi:10.1126/science.1177837

    Article  CAS  PubMed  Google Scholar 

  • Gouy M, Rousselle Y, Chane AT, Anglade A, Royaert S, Nibouche S, Costet L (2015) Genome wide association mapping of agro-morphological and disease resistance traits in sugarcane. Euphytica 202:269–284. doi:10.1007/s10681-014-1294-y

    Article  Google Scholar 

  • Gu ZM, Chen XF, Liu F, Pan JW, Zhang HS, Ma BJ (2010) Characterization of stress-responsive CBL-CIPK signaling network genes for stress tolerance improvement in rice. In Vitro Cell Dev Biol Anim 46:S119

    Google Scholar 

  • Guo M, Liu Q, Yu H, Zhou TT, Zou J, Zhang H, Bian MD, Liu XM (2015) Characterization of alkali stress-responsive genes of the CIPK family in wweet sorghum [Sorghum bicolor (L.) Moench]. Crop Sci 55:1254–1263. doi:10.2135/cropsci2013.08.0520

    Article  CAS  Google Scholar 

  • Hadiarto T, Tran LSP (2011) Progress studies of drought-responsive genes in rice. Plant cell reports 30:297–310. doi:10.1007/s00299-010-0956-z

    Article  CAS  PubMed  Google Scholar 

  • Hao ZF, Li XH, Liu XL, Xie CX, Li MS, Zhang DG, Zhang SH (2010) Meta-analysis of constitutive and adaptive QTL for drought tolerance in maize. Euphytica 174:165–177. doi:10.1007/s10681-009-0091-5

    Article  Google Scholar 

  • Hao ZF, Li XH, Xie CX, Weng JF, Li MS, Zhang DG, Liang XL, Liu LL, Liu SS, Zhang SH (2011) Identification of functional genetic variations underlying drought tolerance in maize using SNP markers. J Integr Plant Biol 53:641–652. doi:10.1111/j.1744-7909.2011.01051.x

    Article  PubMed  Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGEDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620. doi:10.1046/j.1471-8286.2002.00305.x

    Article  Google Scholar 

  • Huang WZ, Ma XR, Wang QL, Gao YF, Xue Y, Niu XL, Yu GR, Liu YS (2008) Significant improvement of stress tolerance in tobacco plants by overexpressing a stress-responsive aldehyde dehydrogenase gene from maize (Zea mays). Plant Mol Biol 68:451–463. doi:10.1007/s11103-008-9382-9

    Article  CAS  PubMed  Google Scholar 

  • Jannink JL, Lorenz AJ, Iwata H (2010) Genomic selection in plant breeding: from theory to practice. Brief Funct Genom 9:166–177. doi:10.1093/bfgp/elq001

    Article  CAS  Google Scholar 

  • Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, Henning AK, SanGiovanni JP, Mane SM, Mayne ST, Bracken MB, Ferris FL, Ott J, Barnstable C, Hoh J (2005) Complement factor H polymorphism in age-related macular degeneration. Science 308:385–389. doi:10.1126/science.1109557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korte A, Farlow A (2013) The advantages and limitations of trait analysis with GWAS: a review. Plant Methods 9:29. doi:10.1186/1746-4811-9-29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li WJ, Liu ZZ, Shi YS, Song YC, Wang TY, Xu CW, Li Y (2010) Detection of consensus genomic region of QTLs relevant to drought-tolerance in maize by QTL meta-analysis and bioinformatics approach. Acta Agron Sin 36:1457–1467. doi:10.3724/sp.j.1006.2010.01457

    Article  CAS  Google Scholar 

  • Li Q, Yang XH, Xu ST, Cai Y, Zhang DL, Han YJ, Li L, Zhang ZX, Gao SB, Li JS, Yan JB (2012) Genome-wide association studies identified three independent polymorphisms associated with alpha-tocopherol content in maize kernels. PLoS One. doi:10.1371/journal.pone.0036807

    Google Scholar 

  • Liu KJ, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129. doi:10.1093/bioinformatics/bti282

    Article  CAS  PubMed  Google Scholar 

  • Liu CL, Weng JF, Zhang DG, Zhang XC, Yang XY, Shi LY, Meng QC, Yuan JH, Guo XP, Hao ZF, Xie CX, Li MS, Ci XK, Bai L, Li XH, Zhang SH (2014) Genome-wide association study of resistance to rough dwarf disease in maize. Eur J Plant Pathol 139:205–216. doi:10.1007/s10658-014-0383-z

    Article  CAS  Google Scholar 

  • Liu CL, Hao ZF, Zhang DG, Xie CX, Li MS, Zhang XC, Yong HJ, Zhang SH, Weng JF, Li XH (2015a) Genetic properties of 240 maize inbred lines and identity-by-descent segments revealed by high-density SNP markers. Mol Breed. doi:10.1007/S11032-015-0344-Z

    Google Scholar 

  • Liu SS, Hao ZF, Weng JF, Li MS, Zhang DG, Pan GT, Zhang SH, Li XH (2015b) Identification of two functional markers associated with drought resistance in maize. Mol Breed. doi:10.1007/s11032-015-0231-7

    Google Scholar 

  • Lu YL, Hao ZF, Xie CX, Crossa J, Araus JL, Gao SB, Vivek BS, Magorokosho C, Mugo S, Makumbi D, Taba S, Pan GT, Li XH, Rong TZ, Zhang SH, Xu YB (2011) Large-scale screening for maize drought resistance using multiple selection criteria evaluated under water-stressed and well-watered environments. Field Crop Res 124:37–45. doi:10.1016/j.fcr.2011.06.003

    Article  Google Scholar 

  • Lu YL, Xu J, Yuan ZM, Hao ZF, Xie CX, Li XH, Shah T, Lan H, Zhang SH, Rong TZ, Xu YB (2012) Comparative LD mapping using single SNPs and haplotypes identifies QTL for plant height and biomass as secondary traits of drought tolerance in maize. Mol Breed 30:407–418. doi:10.1007/s11032-011-9631-5

    Article  CAS  Google Scholar 

  • Matsuda F, Nakabayashi R, Yang ZG, Okazaki Y, Yonemaru J, Ebana K, Yano M, Saito K (2015) Metabolome-genome-wide association study dissects genetic architecture for generating natural variation in rice secondary metabolism. Plant J 81:13–23. doi:10.1111/tpj.12681

    Article  CAS  PubMed  Google Scholar 

  • Misra S, Beach BM, Hurley JH (2000) Structure of the VHS domain of human Tom1 (target of myb 1): insights into interactions with proteins and membranes. Biochemistry 39:11282–11290. doi:10.1021/bi0013546

    Article  CAS  PubMed  Google Scholar 

  • Morrell PL, Buckler ES, Ross-Ibarra J (2011) Crop genomics: advances and applications. Nat Rev Genet 13:85–96. doi:10.1038/nrg3097

    PubMed  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan QC, Ali F, Yang XH, Li JS, Yan JB (2012) Exploring the genetic characteristics of two recombinant inbred line populations via high-density SNP markers in maize. PLoS One. doi:10.1371/journal.pone.0052777

    Google Scholar 

  • Pandey GK, Kanwar P, Singh A, Steinhorst L, Pandey A, Yadav AK, Tokas I, Sanyal S, Kim BG, Lee SC, Cheong YH, Kudla J, Luan S (2015) CBL-interacting protein kinase, CIPK21, regulates osmotic and salt stress responses in Arabidopsis. Plant Physiol. doi:10.1104/pp.15.00623

    PubMed  Google Scholar 

  • Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575. doi:10.1086/519795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rafalski A (2002) Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol 5:94–100

    Article  CAS  PubMed  Google Scholar 

  • Rawlings ND, Tolle DP, Barrett AJ (2004) Evolutionary families of peptidase inhibitors. Biochem J 378:705–716. doi:10.1042/Bj20031825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riedelsheimer C, Lisec J, Czedik-Eysenberg A, Sulpice R, Flis A, Grieder C, Altmann T, Stitt M, Willmitzer L, Melchinger AE (2012) Genome-wide association mapping of leaf metabolic profiles for dissecting complex traits in maize. Proc Natl Acad Sci USA 109:8872–8877. doi:10.1073/pnas.1120813109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Setter TL, Yan JB, Warburton M, Ribaut JM, Xu YB, Sawkins M, Buckler ES, Zhang ZW, Gore MA (2011) Genetic association mapping identifies single nucleotide polymorphisms in genes that affect abscisic acid levels in maize floral tissues during drought. J Exp Bot 62:701–716. doi:10.1093/jxb/erq308

    Article  CAS  PubMed  Google Scholar 

  • Trijatmiko KR, Supriyanta Prasetiyono J, Thomson MJ, Cruz CMV, Moeljopawiro S, Pereira A (2014) Meta-analysis of quantitative trait loci for grain yield and component traits under reproductive-stage drought stress in an upland rice population. Mol Breed 34:283–295. doi:10.1007/s11032-013-0012-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuberosa R, Salvi S (2006) Genomics-based approaches to improve drought tolerance of crops. Trends Plant Sci 11:405–412. doi:10.1016/j.tplants.2006.06.003

    Article  CAS  PubMed  Google Scholar 

  • Waldman J, Shannon CE (1948) Retinoblastoma cured by radon. Am J Ophthalmol 31:1008–1010

    CAS  PubMed  Google Scholar 

  • Wang D, Guo Y, Wu C, Yang G, Li Y, Zheng C (2008) Genome-wide analysis of CCCH zinc finger family in Arabidopsis and rice. BMC Genom 9:44. doi:10.1186/1471-2164-9-44

    Article  Google Scholar 

  • Wen WW, Li D, Li X, Gao YQ, Li WQ, Li HH, Liu J, Liu HJ, Chen W, Luo J, Yan JB (2014a) Metabolome-based genome-wide association study of maize kernel leads to novel biochemical insights. Nat Commun. doi:10.1038/Ncomms4438

    Google Scholar 

  • Wen XJ, Niu TT, Kong XP (2014b) In silico analysis of PHB gene family in maize. Plant Growth Regul 73:181–191. doi:10.1007/s10725-013-9879-3

    Article  CAS  Google Scholar 

  • Weng JF, Xie CX, Hao ZF, Wang JJ, Liu CL, Li MS, Zhang DG, Bai L, Zhang SH, Li XH (2011) Genome-wide association study identifies candidate genes that affect plant height in Chinese elite maize (Zea mays L.) inbred lines. PLoS One. doi:10.1371/journal.pone.0029229

    Google Scholar 

  • Xiang Y, Huang Y, Xiong L (2007) Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement. Plant Physiol 144:1416–1428. doi:10.1104/pp.107.101295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie C, Zhang S, Li M, Li X, Hao Z, Bai L, Zhang D, Liang Y (2007) Inferring genome ancestry and estimating molecular relatedness among 187 Chinese maize inbred lines. J Genet Genom 34:738–748. doi:10.1016/S1673-8527(07)60083-6

    Article  Google Scholar 

  • Xu ST, Zhang DL, Cai Y, Zhou Y, Shah T, Ali F, Li Q, Li ZG, Wang WD, Li JS, Yang XH, Yan JB (2012) Dissecting tocopherols content in maize (Zea mays L.), using two segregating populations and high-density single nucleotide polymorphism markers. BMC Plant Biol. doi:10.1186/1471-2229-12-201

    Google Scholar 

  • Xu J, Yuan YB, Xu YB, Zhang GY, Guo XS, Wu FK, Wang Q, Rong TZ, Pan GT, Cao MJ, Tang QL, Gao SB, Liu YX, Wang J, Lan H, Lu YL (2014) Identification of candidate genes for drought tolerance by whole-genome resequencing in maize. BMC Plant Biol. doi:10.1186/1471-2229-14-83

    Google Scholar 

  • Xue YD, Warburton ML, Sawkins M, Zhang XH, Setter T, Xu YB, Grudloyma P, Gethi J, Ribaut JM, Li WC, Zhang XB, Zheng YL, Yan JB (2013) Genome-wide association analysis for nine agronomic traits in maize under well-watered and water-stressed conditions. Theor Appl Genet 126:2587–2596. doi:10.1007/s00122-013-2158-x

    Article  CAS  PubMed  Google Scholar 

  • Yan JB, Warburton M, Crouch J (2011) Association mapping for enhancing maize (Zea mays L.). genetic improvement. Crop Sci 51:433–449. doi:10.2135/cropsci2010.04.0233

    Article  Google Scholar 

  • Yang SJ, Vanderbeld B, Wan JX, Huang YF (2010) Narrowing down the targets: towards successful genetic engineering of drought-tolerant crops. Mol Plant 3:469–490. doi:10.1093/mp/ssq016

    Article  CAS  PubMed  Google Scholar 

  • Yang N, Lu YL, Yang XH, Huang J, Zhou Y, Ali F, Wen WW, Liu J, Li JS, Yan JB (2014) Genome wide association studies using a new nonparametric model reveal the genetic architecture of 17 agronomic traits in an enlarged maize association panel. PLoS Genet. doi:10.1371/journal.pgen.1004573

    Google Scholar 

  • Zhang SH, Hao ZF, Li XH, Su ZJ, Xie CX, Li MS, Liang XL, Weng JF, Zhang DG, Li L (2011) A proposed selection criterion for drought resistance across multiple environments in maize. Breed Sci 61:101–108. doi:10.1270/Jsbbs.61.101

    Article  Google Scholar 

  • Zhang XB, Tang B, Yu F, Li L, Wang M, Xue YD, Zhang ZX, Yan JB, Yue B, Zheng YL, Qiu FZ (2013) Identification of major QTL for waterlogging tolerance using genome-wide association and linkage mapping of maize seedlings. Plant Mol Biol Rep 31:594–606. doi:10.1007/s11105-012-0526-3

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (31271735), the National High Technology Research and Development Program of China (2011AA100501), and the National Plan for Science & Technology Support (2014BAD01B09).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhuan-fang Hao or Xin-hai Li.

Additional information

Nan Wang and Zhen-ping Wang have contributed equally to this research.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 80 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, N., Wang, Zp., Liang, Xl. et al. Identification of loci contributing to maize drought tolerance in a genome-wide association study. Euphytica 210, 165–179 (2016). https://doi.org/10.1007/s10681-016-1688-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-016-1688-0

Keywords

Navigation