Skip to main content
Log in

Resistance to yellow spot in wheat grown under accelerated growth conditions

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Yellow spot, also known as tan spot (YS), is a serious fungal foliar disease of wheat worldwide. The introduction of resistance to YS in wheat cultivars offers the most durable, economic, and environmentally safe management strategy. Adult plant resistance (APR) is preferred over seedling resistance to control other diseases in wheat and has the potential to offer non-race specific resistance to YS. The search for APR currently relies on screening vast numbers of wheat genotypes in the field, where expression is affected by environmental factors. We report a rapid phenotyping method for APR to YS that combines use of constant light and controlled temperatures to achieve accelerated growth conditions (AGC). A panel comprising 20 spring wheat genotypes was evaluated in four separate experiments: (1) seedling stage under regular greenhouse conditions; (2) adult-plant (AP) stage under AGC; (3) integrated seedling and AP disease assessment; and (4) AP stage in the field. Phenotypes from all AP experiments conducted under controlled and field conditions correlated well (r = 0.71–0.84), but correlations between AP and seedling phenotypes were weaker (r = 0.30–0.62). Moderate to high levels of APR were displayed by some genotypes (e.g. CIMMYT line ‘ZWW10-50’) that were equivalent to levels attained by seedling resistant cultivar ‘Leichhardt’. An integrated cycle requires only seven weeks to complete, and provides a useful tool for breeders and pathologists to efficiently phenotype APR to YS under controlled conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ali S, Adhikari T, Barbara S, Cole H (2006) Pyrenophora tritici-repentis (tan spot) races in Australia. Phytopathology 96:S4

    Article  Google Scholar 

  • Anderson JA, Effertz RJ, Faris JD, Francl LJ, Meinhardt SW, Gill BS (1999) Genetic analysis of sensitivity to a Pyrenophora tritici-repentis necrosis-inducing toxin in durum and common wheat. Phytopathology 89:293–297

    Article  CAS  PubMed  Google Scholar 

  • Antoni EA, Rybak K, Tucker MP, Hane JK, Solomon PS, Drenth A, Shankar M, Oliver RP (2010) Ubiquity of ToxA and absence of ToxB in Australian populations of Pyrenophora tritici-repentis. Aust Plant Pathol 39:63–68

    Article  CAS  Google Scholar 

  • Bostock RM, Pye MF, Roubtsova TV (2014) Predisposition in plant disease: exploiting the nexus in abiotic and biotic stress perception and response. Annu Rev Phytopathol 52:517–549

    Article  CAS  PubMed  Google Scholar 

  • Cheong J, Wallwork H, Williams KJ (2004) Identification of a major QTL for yellow leaf spot resistance in the wheat varieties Brookton and Cranbook. Aust J Agric Res 55:315–319

    Article  Google Scholar 

  • Chu CG, Friesen TL, Xu SS, Faris JD (2008) Identification of novel tan spot resistance loci beyond the known host-selective toxin insensitivity genes in wheat. Theor Appl Genet 117:873–881

    Article  CAS  PubMed  Google Scholar 

  • Chu CG, Chao S, Friesen TL, Faris JD, Zhong S, Xu SS (2010) Identification of novel tan spot resistance QTLs using an SSR-based linkage map of tetraploid wheat. Mol Breed 25:327–338

    Article  CAS  Google Scholar 

  • Ciuffetti LM, Tuori RP (1999) Advances in the characterization of the Pyrenophora tritici-repentis–wheat interaction. Phytopathology 89:444–449

    Article  CAS  PubMed  Google Scholar 

  • Ciuffetti LM, Manning VA, Pandelova I, Betts MF, Martinez JP (2010) Host-selective toxins, Ptr ToxA and Ptr ToxB, as necrotrophic effectors in the Pyrenophora tritici-repentis–wheat interaction. New Phytol 187:911–919

    Article  CAS  PubMed  Google Scholar 

  • Cox DJ, Hosford RM (1987) Resistant winter wheats compared at differing growth stages and leaf positions for tan spot severity. Plant Dis 71:883–886

    Article  Google Scholar 

  • da Luz WC, Bergstrom GC (1987) Interaction between Cochliobolus sativus and Pyrenophora tritici-repentis on wheat leaves. Pythopathology 77:1355–1360

    Article  Google Scholar 

  • Dumasalová V, Svobodová L, Hanzalová A (2012) Differentially expressed gene transcripts in wheat and barley leaves upon leaf spot infection. Czech J Genet Plant Breed 48(3):108–119

    Google Scholar 

  • Effertz RJ, Anderson JA, Francl LJ (2001) Restriction fragment length polymorphism mapping of resistance to two races of Pyrenophora tritici-repentis in adult and seedling wheat. Phytopathology 91:572–578

    Article  CAS  PubMed  Google Scholar 

  • Effertz RJ, Meinhardt SW, Anderson JA, Jordahl JG, Francl LJ (2002) Identification of a chlorosis-inducing toxin from Pyrenophora tritici-repentis and the chromosomal location of an insensitivity locus in wheat. Phytopathology 92:527–533

    Article  CAS  PubMed  Google Scholar 

  • Evans CK, Hunger RM, Siegeris WC (1999) Comparison of greenhouse and field testing to identify wheat resistant to tan spot. Plant Dis 83:269–273

    Article  Google Scholar 

  • Faris JD, Friesen TL (2005) Identification of quantitative trait loci for race-nonspecific resistance to tan spot in wheat. Theor Appl Genet 111:386–392

    Article  CAS  PubMed  Google Scholar 

  • Faris JD, Anderson JA, Francl LJ, Jordahl JG (1997) RFLP mapping of resistance to chlorosis induction by Pyrenophora tritici-repentis in wheat. Theor Appl Genet 94:98–103

    Article  CAS  PubMed  Google Scholar 

  • Faris JD, Zhang Z, Lu H, Lu S, Reddy L, Cloutier S, Fellers JP, Meinhardt SW, Rasmussen JB, Xu SS, Oliver RP, Simons KJ, Friesen TL (2010) A unique wheat disease resistance-like gene governs effector-triggered susceptibility to necrotrophic pathogens. Proc Nat Acad Sci USA 107:13544–13549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faris JD, Abeysekara NS, McClean PE, Xu SS, Friesen TL (2012) Tan spot susceptibility governed by the Tsn1 locus and race nonspecific resistance quantitative trait loci in a population derived from the wheat lines Salamouni and Katepwa. Mol Breed 30:1669–1678

    Article  Google Scholar 

  • Faris JD, Liu Z, Xu SS (2013) Genetics of tan spot resistance in wheat. Theor Appl Genet 126:2197–2217

    Article  CAS  PubMed  Google Scholar 

  • Fernandez MR, Clarke JM, DePauw RM (1994) Response of durum wheat kernels and leaves at different growth stages to Pyrenophora tritici-repentis. Plant Dis 78:597–600

    Article  Google Scholar 

  • GRDC–NVT (2015) Grains Research and Development Corporation—National Variety Trial. http://www.nvtonline.com.au/

  • Gurung S, Mamidi S, Bonman JM, Jackson EW, del Río LE, Acevedo M, Mergoum M, Adhikari TB (2011) Identification of novel genomic regions associated with resistance to Pyrenophora tritici-repentis races 1 and 5 in spring wheat landraces using association analysis. Theor Appl Genet 123:1029–1041

    Article  CAS  PubMed  Google Scholar 

  • Hickey LT, Wilkinson PM, Knight CR, Godwin ID, Kravchuk OY, Aitken EB, Bansal UK, Bariana HS, Delacy IH, Dieters MJ (2012) Rapid phenotyping for adult-plant resistance to stripe rust in wheat. Plant Breed 131:54–61

    Article  Google Scholar 

  • Hollaway G (2014) The yellow spot of wheat. The State of Victoria Department of Environment and Primary Industries, Melbourne, Australia

  • Hosford RM, Jordahl JG Jr, Hammond JJ (1990) Effect of wheat genotype, leaf position, growth stage, fungal isolate, and wet period on tan spot lesions. Plant Dis 74:385–390

    Article  Google Scholar 

  • Hua J (2013) Modulation of plant immunity by light, circadian rhythm, and temperature. Curr Opin Plant Biol 16:406–413

    Article  CAS  PubMed  Google Scholar 

  • Istifadah N, McGee PA (2006) Endophytic Chaetomium globosum reduces development of tan spot in wheat caused by Pyrenophora tritici-repentis. Aust Plant Pathol 35:411–418

    Article  Google Scholar 

  • Jackson SD (2009) Plant responses to photoperiod. New Phytol 181:517–531

    Article  CAS  PubMed  Google Scholar 

  • Jørgensen LN, Olsen LV (2007) Control of tan spot (Drechslera tritici-repentis) using cultivar resistance, tillage methods and fungicides. Crop Prot 26:1606–1616

    Article  Google Scholar 

  • Lamari L, Bernier CC (1989) Evaluation of wheat lines and cultivars to tan spot (Pyrenophora tritici-repentis) based on lesion type. Can J Plant Pathol 11:49–56

    Article  Google Scholar 

  • Li HB, Yan W, Liu GR, Wen SM, Liu CJ (2011) Identification and validation of quantitative trait loci conferring tan spot resistance in the bread wheat variety Ernie. Theor Appl Genet 122:395–403

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Friesen TL, Ling H, Meinhardt SW, Oliver RP, Rasmussen JB, Faris JD (2006) The Tsn-1-ToxA interaction in the wheat-Stagonospora nodorum pathosystem parallels that of wheat-tan spot system. Genome 49:1265–1273

    Article  CAS  PubMed  Google Scholar 

  • Lo Iacono G, van den Bosch F, Gilligan CA (2013) Durable resistance to crop pathogens: an epidemiological framework to predict risk under uncertainty. PLoS Comput Biol 9(1):e1002870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manning VA, Ciuffetti LM (2005) Localization of Ptr ToxA produced by Pyrenophora tritici-repentis reveals protein import into wheat mesophyll cells. Plant Cell 17:3203–3212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez JP, Oesch NW, Ciuffetti LM (2004) Characterization of the multiple-copy host-selective toxin gene, ToxB, in pathogenic and non-pathogenic isolates of Pyrenophora tritici-repentis. Mol Plant-Microbe Interact 17:467–474

    Article  CAS  PubMed  Google Scholar 

  • Michelmore RW (2003) The impact zone: genomics and breeding for durable disease resistance. Curr Opin Plant Biol 6:397–404

    Article  PubMed  Google Scholar 

  • Moreno MV, Stenglein SA, Perelló AE (2012): Pyrenophora tritici-repentis, causal agent of tan spot: a review of intraspecific genetic diversity. In: Mahmut Caliskan (ed) The molecular basis of plant genetic diversity, ISBN: 978-953-51-0157-4 In Tech, Available from: http://www.intechopen.com/books/themolecular-basis-of-plant-genetic-diversity/pyrenophora-tritici-repentis-causal-agent-of-tan-spot-areview-ofintraspecific-genetic-diversity

  • Morris JF, Carver BF, Hunger RM, Klatt AR (2010) Greenhouse assessment of seedling reaction to tan spot in synthetic hexaploid wheat. Crop Sci 50:952–959

    Article  Google Scholar 

  • Murray GM, Brennan JP (2009) Estimating disease losses to the Australian wheat industry. Aust Plant Pathol 38:558–570

    Article  Google Scholar 

  • Oliver RP, Lord M, Rybak K, Faris JD, Solomon SP (2008) Emergence of tan spot disease caused by toxigenic Pyrenophora tritici-repentis in Australia is not associated with increased deployment of toxin sensitive cultivars. Phytopathology 98:488–491

    Article  CAS  PubMed  Google Scholar 

  • Oliver RP, Rybak K, Solomon PS, Ferguson-Hunt M (2009) Prevalence of ToxA-sensitive alleles of the wheat gene Tsn1 in Australian and Chinese wheat cultivars. Crop Pasture Sci 60:348–352

    Article  CAS  Google Scholar 

  • Orolaza NP, Lamari L, Ballance GM (1995) Evidence of a host-specific chlorosis toxin from Pyrenophora tritici-repentis, the causal agent of tan spot of wheat. Phytopathology 85:1282–1287

    Article  CAS  Google Scholar 

  • Pandelova I, Figueroa M, Wilhelm LJ, Manning VA, Mankaney AN (2012) Host-selective toxins of Pyrenophora tritici-repentis induce common responses associated with host susceptibility. PLoS ONE 7(7):e40240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavan S, Jacobsen E, Visser RGF, Bai Y (2010) Loss of susceptibility as a novel breeding strategy for durable and broad-spectrum resistance. Mol Breed 25:1–12

    Article  PubMed  PubMed Central  Google Scholar 

  • Perello A, Moreno V, Simón MR, Sisterna M (2003) Tan spot of wheat (Triticum aestivum L.) infection at different stages of crop development and inoculum type. Crop Prot 22:157–169

    Article  Google Scholar 

  • Platt HW, Morrall RAA, Gruen HE (1977) The effects of substrate, temperature, and photoperiod on conidiation of Pyrenophora tritici-repentis. Can J Bot 55:254–259

    Article  Google Scholar 

  • Poland JA, Balint-Kurti PJ, Wisser RJ, Pratt RC, Nelson RJ (2009) Shades of gray: the world of quantitative disease resistance. Trends Plant Sci 14:21–29

    Article  CAS  PubMed  Google Scholar 

  • R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/

  • Raymond PJ, Bockus WW, Norman BL (1985) Tan spot of winter wheat: procedures to determine host response. Phytopathology 75:686–690

    Article  Google Scholar 

  • Rees RG, Platz GJ (1979) The occurrence and control of yellow spot of wheat in north-eastern Australia. Aust J Exp Agric Anim Husb 19:369–372

    Article  Google Scholar 

  • Rees RG, Platz GJ (1989) Effectiveness of incomplete resistance to Pyrenophora tritici-repentis in wheat. Aust J Agric Res 40:43–48

    Article  Google Scholar 

  • Rees RG, Platz GJ (1990) Sources of resistance to Pyrenophora tritici-repentis in bread wheats. Euphytica 45:56–69

    Google Scholar 

  • Rees RG, Platz GJ, Mayer RJ (1982) Yield losses in wheat from yellow spot: comparison of estimates derived from single tillers and plots. Aust J Agric Res 33:899–908

    Article  Google Scholar 

  • Rees RG, Platz GJ, Mayer RJ (1987) Susceptibility of Australian wheats to Pyrenophora tritici-repentis. Aust J Agric Res 39:141–151

    Article  Google Scholar 

  • Riede CR, Francl LJ, Anderson JA, Jordahl JG, Meinhardt SW (1996) Additional sources of resistance to tan spot of wheat. Crop Sci 36:771–777

    Article  Google Scholar 

  • Ronis A, Semaškienė R (2006) Development of tan spot (Pyrenophora tritici-repentis) in winter wheat under field conditions. Agron Res 4:331–334

    Google Scholar 

  • Schoeneweiss DF (1975) Predisposition, stress, and plant disease. Annu Rev Phytopathol 13:193–211

    Article  Google Scholar 

  • Shackley B, Zaicou-Kunesch C, Dhammu H, Shankar M, Amjad M, Young K (2014) Wheat variety guide for WA 2014, Bulletin 4857. Western Australia Agriculture Authority, Perth, Australia

  • Shankar M, Foster D, Jorgensen D (2013) A novel reliable method of field screening for yellow spot resistance. Crop Updates 2013, Grain Industry Association of Western Australia, Perth, Australia

  • Singh PK, Mergoum M, Gonzalez-Hernandez JL, Ali S, Adhikari TB, Kianian SF, Elias EM, Hughes GR (2008) Genetics and molecular mapping of resistance to necrosis inducing race 5 of Pyrenophora tritici-repentis in tetraploid wheat. Mol Breed 21:293–304

    Article  CAS  Google Scholar 

  • Singh PK, Duveiller E, Singh RP (2011) Evaluation of CIMMYT germplasm for resistance to leaf spotting diseases of wheat. Czech J Genet Plant Breed 47:S102–S108

    Google Scholar 

  • Singh PK, Duveiller E, Singh RP (2012) Resistance breeding for tan Spot (Pyrenophora tritici-repentis) of wheat. In: Sharma I (ed) Disease resistance in wheat. CAB International, Wallingford, pp 136–150

    Chapter  Google Scholar 

  • Sysoeva MI, Markovskaya EF, Shibaeva TG (2010) Plants under continuous light: a review. Plant Stress 4(1):5–17

    Google Scholar 

  • Tadesse W, Schmolke M, Hsam SLK, Mohler V, Wenzel G, Zeller FJ (2007) Molecular mapping of resistance genes to tan spot [Pyrenophora tritici-repentis race 1] in synthetic wheat lines. Theor Appl Genet 114:855–862

    Article  CAS  PubMed  Google Scholar 

  • Tadesse W, Reents HJ, Hsam SLK, Zeller FJ (2011) Relationship of seedling and adult plant resistance and evaluation of wheat germplasm against tan spot (Pyrenophora tritici-repentis). Genet Resour Crop Evol 58:339–346

    Article  Google Scholar 

  • Tomas A, Feng GH, Reeck GR, Bockus WW, Leach JE (1990) Purification of a cultivar-specific toxin from Pyrenophora tritici-repentis, causal agent of tan spot of wheat. Mol Plant-Microbe Interact 3:221–224

    Article  CAS  Google Scholar 

  • Velez-Ramirez AI, van Ieperen W, Vreugdenhil D, Millenaar FF (2011) Plants under continuous light. Trends Plant Sci 16:310–318

    Article  CAS  PubMed  Google Scholar 

  • Wheat Varieties (2015) Queensland. Grains Research and Development Corporation (GRDC) and Department of Employment, Economic Development and Innovation (DEEDI). www.nvtonline.com.au

  • Xu SS, Friessen TL, Mujeeb-Kazi A (2004) Seedling resistance to tan spot and Stagonospora nodorum blotch in synthetic hexaploid wheats. Crop Sci 44:2238–2245

    Article  Google Scholar 

  • Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415–421

    Article  Google Scholar 

  • Zhang HF, Francl LJ, Jordahl JG, Meinhardt SW (1997) Structural and physical properties of a necrosis-inducing toxin from Pyrenophora tritici-repentis. Phytopathology 87:154–160

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was partially supported by the University of Queensland through an international PhD scholarship. We acknowledge Mr. Greg Platz (Department of Agriculture and Fisheries) for valuable advice relating to the inoculation and field-based inoculum increase techniques reported in this study and PhD student Mr. Adnan Riaz for assistance with glasshouse experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Dinglasan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinglasan, E., Godwin, I.D., Mortlock, M.Y. et al. Resistance to yellow spot in wheat grown under accelerated growth conditions. Euphytica 209, 693–707 (2016). https://doi.org/10.1007/s10681-016-1660-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-016-1660-z

Keywords

Navigation