Skip to main content

Advertisement

Log in

Genomics enabled breeding approaches for improving cadmium stress tolerance in plants

  • Review
  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Heavy metal (HM) toxicity is a considerable challenge that the current agricultural production systems and human population face worldwide. Among the HMs with pronounced toxic effects, cadmium (Cd) potentially contaminates a range of vital agricultural resources including soil and water together with severely impacting crop performance. Besides, gradual accumulation of Cd in food chain poses a global threat to food safety and environmental sustainability. Plants are equipped with meticulously orchestrated physiological and molecular mechanisms to respond and acclimatize to Cd-challenged scenarios. However, limited understanding about the HM toxicity mechanism involving metal uptake/transport, associated candidate gene (s) or QTLs and signaling crosstalk has greatly constrained breeding capacities to improve plants for HM tolerance. In the context, quantifying genetic variation for Cd tolerance accompanied by appropriate breeding schemes allowing the most efficient utilization of the estimated variation should be essentially undertaken. Concurrently, efforts are needed to facilitate fast-track introgression of genomic segments harboring candidate gene(s)/QTL for Cd tolerance to high yielding yet Cd-susceptible backgrounds. Advances in plant molecular biology have introduced refined techniques and methods to pinpoint genetic factors describing plant Cd tolerance. Ancillary to conventional breeding and marker assisted selection methods are modern transgenic technologies that offer attractive means to precisely interrogate the relevant molecular networks and manipulate the key Cd-related genes in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe T, Taguchi-Shiobara F, Kojima Y, Ebitani T, Kuramata M, Yamamoto T, Yano M, Ishikawa S (2011) Detection of a QTL for accumulating Cd in rice that enables efficient Cd phytoextraction from soil. Breed Sci 61:43–51

    Article  CAS  Google Scholar 

  • Abe T, Nonoue Y, Ono N, Omoteno M, Kuramata M, Fukuoka S, Yamamato T, Yano M, Ishikawa S (2013) Detection of QTLs to reduce cadmium content in rice grains using LAC23/Koshihikari chromosome segment substitution lines. Breed Sci 63:284–291

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ahmad P, Ashraf M, Younis M, Hu X, Kumar A, Akram NA, Al-Qurainy F (2012) Role of transgenic plants in agriculture and biopharming. Biotechnol Adv 30:524–540

    Article  CAS  PubMed  Google Scholar 

  • Ahsan N, Nakamura T, Komatsu S (2012) Differential responses of microsomal proteins and metabolites in two contrasting cadmium (Cd)-accumulating soybean cultivars under Cd stress. Amino Acids 42:317–327

    Article  CAS  PubMed  Google Scholar 

  • Aina R, Labra M, Fumagalli P, Vannini C, Marsoni M, Cucchi U, Bracale M, Sgorbati S, Citterio S (2007) Thiol-peptide level and proteomic changes in response to cadmium toxicity in Oryza sativa L. roots. Environ Exp Bot 59:381–392

    Article  CAS  Google Scholar 

  • Alcantara E, Romero FJ, Canete M, De La Guardia MD (1994) Effects of heavy metals on both induction and function of root Fe(III) reductase in Fe-deficient cucumber (Cucumis sativus L.) plants. J Exp Bot 45:1893–1898

    Article  CAS  Google Scholar 

  • Alloway BJ (1995) Heavy metals in soils. Blackie Academic & Professional, London, pp 38–57

    Google Scholar 

  • Alvarez S, Berla BM, Sheffield J, Cahoon RE, Jez JM, Hicks LM (2009) Comprehensive analysis of the Brassica juncea root proteome in response to cadmium exposure by complementary proteomic approaches. Proteomics 9:2419–2431

    Article  CAS  PubMed  Google Scholar 

  • Antosiewicz DM, Henning J (2004) Over expression of LTC1 in tobacco enhances the protective action of calcium against cadmium toxicity. Environ Pollut 129:237–245

    Article  CAS  PubMed  Google Scholar 

  • Arao T, Ae N (2003) Genotypic variations in cadmium levels of rice grain. Soil Sci Plant Nutr 287:223–233

    Google Scholar 

  • Arao T, Ae N, Sugiyama M, Takahashi M (2003) Genotypic differences in cadmium uptake and distribution in soybeans. Plant Soil 251:247–253

    Article  CAS  Google Scholar 

  • Arao T, Ishikawa S, Murakami M, Abe K, Maejima Y, Makino T (2010) Heavy metal contamination of agricultural soil and countermeasures in Japan. Paddy Water Environ, 8:247–257

    Article  Google Scholar 

  • Arduini I, Ercoli L, Mariotti M, Masoni A (2006) Response of miscanthus to toxic cadmium applications during the period of maximum growth. Environ Exp Bot 55:29–40

    Article  CAS  Google Scholar 

  • Asami T (1984) Pollution of soils by cadmium. Changing metal cycles and human health Dahlem workshop reports. Life Sci Res Rep 28:95–111

    CAS  Google Scholar 

  • Ashraf M (2010) Inducing drought tolerance in plants: recent advances. Biotechnol Adv 28:169–183

    Article  CAS  PubMed  Google Scholar 

  • Baker AJM, Whiting SN (2002) In search of the Holy Grail—a further ste in understanding metal hyperaccumulation? New Phytol 155:1–4

    Article  Google Scholar 

  • Balestrasse KB, Benavides MP, Gallego SM, Tomaro ML (2003) Effect on cadmium stress on nitrogen metabolism in nodules and roots of soybean plants. Funct Plant Biol 30:57–64

    Article  CAS  Google Scholar 

  • Balestrasse KB, Gallego SM, Tomaro ML (2004) Cadmium induced senescence in nodules of soybean (Glycine max. L) plants. Plant Soil 262:373–381

    Article  CAS  Google Scholar 

  • Bandara JMRS, Senevirathna DMAN, Dasanayake DMRSB, Herath V, Bandara JMRP, Abeysekara T, Rajapaksha KH (2007) Chronic renal failure among farm families in cascade irrigation systems in Sri Lanka associated with elevated dietary cadmium levels in rice and freshwater Wsh (Tilapia). Environ Geochem Health 30:465–478

    Article  CAS  Google Scholar 

  • Bandara JMRS, Wijewardena HVP, Liyanege J, Upul MA, Bandara JMUA (2010) Chronic renal failure in Sri Lanka caused by elevated dietary cadmium: Trojan horse of the green revolution. Toxicol Lett 198:33–39

    Article  CAS  PubMed  Google Scholar 

  • Benavides MP, Gallego SM, Tomaro ML (2005) Cadmium toxicity in plant. Braz J Plant Physiol 17:21–35

    Article  CAS  Google Scholar 

  • Benitez ER, Hajika M, Yamada T, Takahashi K, Oki N, Yamada N, Nakamura T, Kanamaru K (2010) A major QTL controlling seed cadmium accumulation in soybean. Crop Sci 50:1728–1734

    Article  CAS  Google Scholar 

  • Benitez ER, Hazika M, Takahashi R (2012) Single-base substitution in P1b-ATpase gene is associated with a major QTL for seed cadmium concentration in soybean. J Hered. doi:10.1093/jhered/esr123

    PubMed  Google Scholar 

  • Bennett LE, Burkhead JL, Hale KL, Terry N, Pilon M, Pilon-Smits EA (2003) Analysis of transgenic Indian mustard plants for phytoremediation of metal-contaminated mine tailings. J Environ Qual 32:432–440

    Article  CAS  PubMed  Google Scholar 

  • Bernard C, Roosens N, Czernic P, LebrunM Verbruggen N (2004) A novel CPx-ATPase from the cadmium hyperaccumulator Thlaspi caerulescens. FEBS Lett 569:140–148

    Article  CAS  PubMed  Google Scholar 

  • Bert V, Bonnin I, Saumitou-Laprade P, de Laguerie P, Petit D (2002) Do Arabidopsis halleri from nonmetallicolous populations accumulate zinc and cadmium more effectively than those from metallicolous populations? New Phytol 155:47–57

    Article  CAS  Google Scholar 

  • Blinda A, Koch B, Ramanjulu S, Dietz KJ (1997) De novo synthesis and accumulation of apoplastic proteins in leaves of heavy metal exposed barley seedlings. Plant, Cell Environ 20:969–981

    Article  CAS  Google Scholar 

  • Briat JF, Lebrun M (1999) Plant responses to metal toxicity. Plant Biol Pathol 322:43–54

    CAS  Google Scholar 

  • Brunetti P, Zanella L, Proia A, Paolis AD, Falasca G, Altamura MM, di Toppi LS, Costantino P, Cardarelli M (2011) Cadmium tolerance and phytochelatin content of Arabidopsis seedlings over-expressing the phytochelatin synthase gene AtPCS1. J Exp Bot 62:5509–5519

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cailliatte R, Lapeyre B, Briat J-F, Mari S, Curie C (2009) The NRAMP6 metal transporter contributes to cadmium toxicity. Biochem J 422:217–228

    Article  CAS  PubMed  Google Scholar 

  • Cakmak I, Welch RM, Hart J, Norvell WA, Ozturk L, Kochain LV (2000) Uptake and retranslocation of leaf applied cadmium (109Cd) in diploid, tetraploid and hexaploids wheats. J Exp Bot 51:221–226

    Article  CAS  PubMed  Google Scholar 

  • Cao F, Wang R, Cheng W, Zeng F, Ahmed IM, Hu X, Zhang G, Wu F (2014a) Genotypic and environmental variation in cadmium, chromium, lead and copper in rice and approaches for reducing the accumulation. Sci Total Environ 496:275–281

    Article  CAS  PubMed  Google Scholar 

  • Cao F, Chen F, Sun H, Zhang G, Chen ZH, Wu F (2014b) Genome-wide transcriptome and functional analysis of two contrasting genotypes reveals key genes for cadmium tolerance in barley. BMC Genom 15:611

    Article  CAS  Google Scholar 

  • Cao F, Cai Y, Liu L, Zhang M, He X, Zhang G, Wu F (2015) Differences in photosynthesis, yield and grain cadmium accumulation as affected by exogenous cadmium and glutathione in the two rice genotypes. Plant Growth Regul 75:715–723

    Article  CAS  Google Scholar 

  • Cattani I, Romani M, Boccelli R (2008) Effect of cultivation practices on cadmium concentration in rice grain. Agron Sustain Dev 28:265–271

    Article  CAS  Google Scholar 

  • Chan DY, Hale BA (2004) Differential accumulation of Cd in durum wheat cultivars: uptake and re translocation as sources of variation. J Exp Bot 55:2571–2579

    Article  CAS  PubMed  Google Scholar 

  • Chao DY, Silva A, Baxter I, Huang YS, Nordborg M, Danku J, Lahner B, Yakubova E, Salt DE (2012) Genome wide association studies identify heavy metal ATPase3 as the primary determinant of natural variation in leaf cadmium in Arabidopsis thaliana. PLoS Genet 2012:8

    Google Scholar 

  • Chen F, Dong J, Wang F, Wu F, Zhang G, Li G, Chen Z, Chen J, Wei K (2007) Identification of barley genotypes with low grain Cd accumulation and its interaction with four microelements. Chemosphere 67:2082–2088

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Li TQ, Han X, Ding Z, Yang X, Jin Y (2012) Cadmium accumulation in different Pakchoi cultivars and screening for pollution-safe cultivars. J Zhejiang Univ Sci B (Biomed Biotechnol) 13:494–502

    Article  CAS  Google Scholar 

  • Chen Y, Xu W, Shen H, Yan H, Xu W, He Z, Ma M (2013) Engineering arsenic tolerance and hyper accumulation in plants for phytoremediation by a PvACR3 transgenic approach. Environ Sci Technol 47:9355–9362

    Article  CAS  PubMed  Google Scholar 

  • Cheng F, Zhao N, Xu H, Li Y, Zhang W, Zhu Z, Chen M (2006) Cadmium and lead contamination in japonica rice grains and its variation among the different locations in southeast China. Sci Total Environ 359:156–166

    Article  CAS  PubMed  Google Scholar 

  • Chiyoda N, Kobayashi E, Okubo Y, Suwazono Y, Kido T, Nogawa K (2003) Allowable level of lifetime cadmium intake calculated from the individuals in the Jinzu river basin of Japan. Biol Trace Elem Res 96:1–20

    Article  Google Scholar 

  • Chmielowska-Bąk J, Deckert J (2012) A common response to common danger? Comparison of animal and plant signaling pathways involved in cadmium sensing. J Cell Commun Signal 6:191–204

    Article  PubMed Central  PubMed  Google Scholar 

  • Chmielowska-Bak J, LefèvreI Lutts S, Deckert J (2013) Short term signaling responses in roots of young soybean seedlings exposed to cadmium stress. J Plant Physiol 170:1585–1594

    Article  CAS  PubMed  Google Scholar 

  • Chmielowska-Bak J, Gzyl J, Rucinska-Sobkowiak R, Arasimowicz-Jelonek M, Deckert J (2014) The new insights into cadmium sensing. Front Plant Sci 5:1–13

    Google Scholar 

  • Ci D, Jiang D, Li S, Wollenweber B, Dai T, Cao W (2012) Identification of quantitative trait loci for cadmium tolerance and accumulation in wheat. Acta Physiol Plant 34:191–202

    Article  CAS  Google Scholar 

  • Clarke JM, Leisle D, DePauw RM, Thiessen LL (1997) Registration of five pairs of durum wheat genetic stocks near-isogenic for cadmium concentration. Crop Sci 37:297

    Article  Google Scholar 

  • Clarke JM, Norvell WA, Clarke FR, Buckley WT (2002) Concentration of cadmium and other elements in the grain of near-isogenic durum lines. Can J Plant Sci 82:27–33

    Article  CAS  Google Scholar 

  • Clarke JM, McCaig TN, DePauw RM, Knox RE, Clarke FR, Fernandez MR, Ames NP (2005) Strongfield durum wheat. Can J Plant Sci 85:651–654

    Article  Google Scholar 

  • Clarke JM, Knox RE, DePauw RM, Clarke FR, McCaig TN, Fernandez MR, Singh AK (2009a) Eurostar durum wheat. Can J Plant Sci 89:317–320

    Article  Google Scholar 

  • Clarke JM, Knox RE, DePauw RM, Clarke FR, Fernandez MR, McCaig TN, Singh AK (2009b) Brigade durum wheat. Can J Plant Sci 89:505–509

    Article  Google Scholar 

  • Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212:475–486

    Article  CAS  PubMed  Google Scholar 

  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719

    Article  CAS  PubMed  Google Scholar 

  • Clemens S, Kim EJ, Neumann D, Schroeder JI (1999) Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. EMBO J 18:3325–3333

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Clemens S, Aarts MGM, Thomine S, Verbruggen N (2013) Plant science: the key to preventing slow cadmium poisoning. Trends Plant Sci 18:92–99

    Article  CAS  PubMed  Google Scholar 

  • Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–832

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) PHYTOCHELATINS AND METALLOTHIONEINS: roles inheavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    Article  CAS  PubMed  Google Scholar 

  • Codex (2006) Report of the 29th session of the Codex Alimentarius Commission; ALINORM 05/28/41. Codex Alimentarius Commission, Rome

  • Codex Alimentarius Commission (2001) Report of the 33rd Session of the Codex Committee on Food Additives and Contaminants. The Hague, The Netherlands: Joint FAO/WHO Food Standards Programme. ALINORM 01/12A. Appendix XV, p. 285. ftp://ftp.fao.org/codex/alinorm01/al0112ae.pdf

  • CODEX STAN 193-1995 (2009) Codex general standard for contaminants and toxins in foods and feed [WWW document]. http://www.codexalimentarius.net/download/standards/17/CXS_193e.pdf. Accessed Dec 2010

  • Commission of the European Communities (2008) Amending Regulation (EC) No 1881/2006 setting levels for certain contaminants in foodstuffs. Official J Eur Union L 173/8

  • Courbot M, Willems G, Motte P, Arvidsson S, Roosens N, Saumitou-Laprade P, Verbruggen N (2007) A major quantitative trait Locus for cadmium tolerance in Arabidopsis halleri colocalizes with HMA4, a gene encoding a heavy metal ATPase. Plant Physiol 144:1052–1065

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • DalCorso G, Farinati S, Maistri S, Furini A (2008) How plants cope with cadmium: staking all on metabolism and gene expression. J Integr Plant Biol 10:1268–1280

    Article  CAS  Google Scholar 

  • DalCorso G, Farinati S, Furini A (2010) Regulatory networks of cadmium stress in plants. Plant Signal Behav 5:663–667

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Daniell H, Khan MS, Allison L (2002) Milestones in chloroplast genetic engineering: an environmentally friendly era in biotechnology. Trends Plant Sci 7:84–91

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Deniau AX, Pieper B, Bookum WMT, Lindhout P, Aarts MGM, Schat H (2006) QTL analysis of cadmium and zinc accumulation in the heavy metal hyper accumulator Thlaspi caerulescens. Theor Appl Genet 113:907–920

    Article  CAS  PubMed  Google Scholar 

  • Ding YF, Zhu C (2009) The role of microRNAs in copper and cadmium homeostasis. Biochem Biophys Res Commun 386:6–10

    Article  CAS  PubMed  Google Scholar 

  • Ding YF, Chen Z, Zhu C (2011) Microarray-based analysis of cadmium-responsive microRNAs in rice (Oryza sativa). J Exp Bot 60:3563–3573

    Article  CAS  Google Scholar 

  • Dixit P, Mukherjee PK, Ramachandran V, Eapen S (2011) Glutathione transferase from Trichoderma virens enhances cadmium tolerance without enhancing its accumulation in transgenic Nicotiana tabacum. PLoS ONE 6:e16360

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Doucleff M, Terry N (2002) Pumping out the arsenic. Nat Biotechnol 20:1094–1095

    Article  CAS  PubMed  Google Scholar 

  • Dunbar KR, McLaughlin MJ, Reid RJ (2003) The uptake and partitioning of cadmium in two cultivars of potato (Solanum tuberosum L.). J Exp Bot 54:349–354

    Article  CAS  PubMed  Google Scholar 

  • Durand TC, Sergeant K, Planchon S, Carpin S, Label P, Morabito D, Hausman JF, Renaut J (2010) Acute metal stress in Populus tremula × P. alba (717-1B4 genotype): leaf and cambial proteome changes induced by cadmium 2+. Proteomics 10:349–368

    Article  CAS  PubMed  Google Scholar 

  • Ebana K, Kojima Y, Fukuoka S, Nagamine T, Kawase M (2008) Development of mini core collection of Japanese rice landrace. Breed Sci 58:281–291

    Article  Google Scholar 

  • EFSA (European Food Safety Authority) (2009) Scientific Opinion of the Panel on Contaminants in the Food Chain on a request from the European Commission on cadmium in food. EFSA J 980:1–139

  • Egan SK, Bolger PM, Carrington CD (2007) Update of US FDA’s total diet study food list and diets. J Expo Sci Environ Epidemiol 17:573–582

    Article  CAS  PubMed  Google Scholar 

  • Erickson DL, Fenster CB, Stenoien HK, Price D (2004) Quantitative trait locus analyses and the study of evolutionary process. Mol Ecol 13:2505–2522

    Article  CAS  PubMed  Google Scholar 

  • Fang X, Zhao Y, Ma Q, Huang Y, Wang P, Zhang J, Nian H, Yang C (2013) Identification and comparative analysis of cadmium tolerance-associated miRNAs and their targets in two soybean genotypes. PLoS ONE 8:e81471

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fang Y, Sun X, Yang W, Ma N, Xin Z, Fu J, Liu X, Liu M, Mariga AM, Zhu X, Hu Q (2014) Concentrations and health risks of lead, cadmium, arsenic, and mercury in rice and edible mushrooms in China. Food Chem 147:147–151

    Article  CAS  PubMed  Google Scholar 

  • Farinati S, DalCorso G, Varotto S, Furini A (2010) The Brassica juncea BjCdR15, an ortholog of Arabidopsis TGA3, is a regulator of cadmium uptake, transport and accumulation in shoots and confers cadmium tolerance in transgenic plants. New Phytol 185:964–978

    Article  CAS  PubMed  Google Scholar 

  • Fodor A, Szabo-Nagy A, Erdei L (1995) The effects of cadmium on the fluidity and H+-ATPase activity of plasma membrane from sunflower and wheat roots. J Plant Physiol 14:787–792

    Google Scholar 

  • Foy CD, Chaney RL, Whoite MC (1978) The physiology of metal toxicity in plants. Annu Rev Plant Physiol 29:511–566

    Article  CAS  Google Scholar 

  • Fu J, Zhou Q, Liu J, Liu W, Wang T, Zhang Q, Jiang G (2008) High levels of heavy metals in rice (Oryza sativa L.) from a typical E-waste recycling area in southeast China and its potential risk to human health. Chemosphere 71:1269–1275

    Article  CAS  PubMed  Google Scholar 

  • Fujimaki S, Suzui N, Ishioka NS, Kawachi N, Ito S, Chino M, Nakamura S (2010) Tracing cadmium from culture to spikelet: noninvasive imaging and quantitative characterization of absorption, transport, and accumulation of cadmium in an intact rice plant. Plant Physiol 152:1796–1806

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fusco N, Micheletto L, Dal Corso G, Borgato L, Furini A (2005) Identification of cadmium-regulated genes by cDNA-AFLP in the heavy metal accumulator Brassica juncea L. J Exp Bot 56:3017–3027

    Article  CAS  PubMed  Google Scholar 

  • Gaillard S, Jacquet H, Vavasseur A, Leonhardt N, Forestier C (2008) AtMRP6/AtABCC6, an ATP-Binding Cassette transporter gene expressed during early steps of seedling development and up-regulated by cadmium in Arabidopsis thaliana. BMC Plant Biol 8:22

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gallego SM, Pena LB, Barcia RA, Azpilicueta CE, Iannone MF, Rosales EP, Zawoznik M, Groppa MD, Benavides MP (2012) Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environ Exp Bot 83:33–46

    Article  CAS  Google Scholar 

  • Gao J, Sun L, Yang X, Liu JX (2013) Transcriptomic analysis of cadmium stress response in the heavy metal hyperaccumulator Sedum alfredii Hance. PLoS ONE 8:e64643

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Garnier L, Simon-Plas F, Thuleau P, Agnel JP, Blein JP, Ranjeva R, Montillet JL (2006) Cadmium affects tobacco cells by a series of three waves of reactive oxygen species that contribute to cytotoxicity. Plant, Cell Environ 29:1956–1969

    Article  CAS  Google Scholar 

  • Gasic K, Korban SS (2007a) Transgenic Indian mustard (Brassica juncea) plants expressing an Arabidopsis phytochelatin synthase (AtPCS1) exhibit enhanced As and Cd tolerance. Plant Mol Biol 64:361–369

    Article  CAS  PubMed  Google Scholar 

  • Gasic K, Korban SS (2007b) Expression of Arabidopsis phytochelatin synthase in Indian mustard (Brassica juncea) plants enhances tolerance for Cd and Zn. Planta 225:1277–1285

    Article  CAS  PubMed  Google Scholar 

  • Gaur R, Bhatia S, Gupta M (2014) Generation of expressed sequence tags under cadmium stress for gene discovery and development of molecular markers in chickpea. Protoplasma 251:955–972

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2011) Cadmium stress tolerance in crop plants probing the role of sulfur. Plant Signal Behav 6:215–222

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Khan NA, Tuteja N (2012) Cadmium at high dose perturbs growth, photosynthesis and nitrogen metabolism while at low dose it up regulates sulfur assimilation and antioxidant machinery in garden cress (Lepidium sativum L.). Plant Sci 182:112–120

    Article  CAS  PubMed  Google Scholar 

  • Gill S, Hasanuzzaman M, Nahar K, Macovei A, Tuteja N (2013) Importance of nitric oxide in cadmium stress tolerance in crop plants. Plant Physiol Biochem 63:254–261

    Article  CAS  PubMed  Google Scholar 

  • Gong WQ, Li LQ, Pan GX (2007) Cd uptake and accumulation in grains by hybrid rice in two paddy soils: interactive effect of soil type and cultivars. Huan Jing Ke Xue 27:1647–1653

    Google Scholar 

  • Grant CA, Clarke JM, Duguid S, Chaney RL (2008) Selection and breeding of plant cultivars to minimize cadmium accumulation. Sci Total Environ 390:301–310

    Article  CAS  PubMed  Google Scholar 

  • Greger M, Löfstedt M (2004) Comparison of uptake and distribution of cadmium in different cultivars of bread and durum wheat. Crop Sci 44:501–507

    Article  CAS  Google Scholar 

  • Greger M, Johansson M, Stihi D, Humza K (1994) Foliar uptake of Cd by pea (Pisum sativum) and sugar beet (Beta vulgaris). Physiol Plant 88:563–570

    Article  Google Scholar 

  • Grill E, Loffler S, Winnacke EL, Zenk MH (1987) Phytochelatins, a class of heavy-metal-binding peptides from plants, are functionally analogous to metallothioneins. Pro Nat Acad Sci USA 84:439–443

    Article  CAS  Google Scholar 

  • Grill E, Loffler S, Winnacke EL, Zenk MH (1989) Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific γ-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc Natl Acad Sci USA 86:6838–6842

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guan C, Jin C, Ji J, Wang G, Li X (2015a) LcBiP, a endoplasmic reticulum chaperone binding protein gene from Lycium chinense, confers cadmium tolerance in transgenic tobacco. Biotechnol Prog. doi:10.1002/btpr.2046

    PubMed  Google Scholar 

  • Guan C, Ji J, Jia C, Guan W, Li X, Jin C, Wang G (2015b) A GSHS-like gene from Lycium chinense maybe regulated by cadmium-induced endogenous salicylic acid and over expression of this gene enhances tolerance to cadmium stress in Arabidopsis. Plant Cell Rep 34:871–884

    Article  CAS  PubMed  Google Scholar 

  • Guan C, Ji J, Wu D, Li X, Jin C, Guan W, Wang G (2015c) The glutathione synthesis may be regulated by cadmium-induced endogenous ethylene in Lycium chinense, and overexpression of an ethylene responsive transcription factor gene enhances tolerance to cadmium stress in tobacco. Mol Breed 35:123

    Article  CAS  Google Scholar 

  • Guo JB, Dai XJ, Xu WZ et al (2008) Overexpressing GSH1 and AsPCS1 simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Chemosphere 72:1020–1026

    Article  CAS  PubMed  Google Scholar 

  • Guo-ming S, Qi-zhen D, Jiang-xin W (2012) Involvement of plasma membrane Ca2+/H+ antiporter in Cd2+ tolerance. Rice Sci 19:161–165

    Article  Google Scholar 

  • Ha S-B, Smith AP, Howden R, Dietrich WM, Bugg S, O'Connell MJ, Goldsbrough PB, Cobbett CS (1999) Phytochelatin synthase genes from Arabidopsis and the yeast, Schizosaccharomyces pombe. Plant Cell 11:1153–1164

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Halimaa P, Blande D, Aarts MGM, Tuomainen M, Tervahauta A, Karenlampi S (2014) Comparative transcriptome analysis of the metal hyper accumulator Noccaea caerulescens. Front Plant Sci 5:1–7

    Article  Google Scholar 

  • Hall JL (2002) Cellular mechanism for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  CAS  PubMed  Google Scholar 

  • Han B, Yang Z, Xie Y, Nie L, Cui J, Shen W (2013) Arabidopsis HY1 confers cadmium tolerance by decreasing nitric oxide production and improving iron homeostasis. Mol Plant. doi:10.1093/mp/sst122

    Google Scholar 

  • Haque MD, Sasaki C, Matsuyama N, Annaka T, Sasaki K (2014) Effect of groundwater level on cadmium uptake and yield of soybean from cadmium polluted soils. Int J Environ Rural Dev 1–15:107–113

    Google Scholar 

  • Harada E, Cho YE, Tsuchisaka A, Obata H, Sano H (2001) Transgenic tobacco plants expressing a rice cysteine synthase gene are tolerant to toxic levels of cadmium. J Plant Physiol 158:655–661

    Article  CAS  Google Scholar 

  • Harris NS, Taylor GJ (2001) Remobilization of cadmium in maturing shoots of near isogenic lines of durum wheat that differ in grain cadmium accumulation. J Exp Bot 52:1473–1481

    Article  CAS  PubMed  Google Scholar 

  • Harris NS, Taylor GJ (2004) Cadmium uptake and translocation in seedlings of near isogenic lines of durum wheat that differ in grain cadmium accumulation. BMC Plant Biol 4:4

    Article  PubMed Central  PubMed  Google Scholar 

  • Harris NS, Taylor GJ (2013) Cadmium uptake and partitioning in durum wheat during grain filling. BMC Plant Biol 13:103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hart JJ, Welch RM, Norvell WA, Kochian LV (2006) Characterization of cadmium uptake, translocation and storage in near-isogenic lines of durum wheat that differ in grain cadmium concentration. New Phytol 172:261–271

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Fujita M (2012) Heavy metals in the environment: current status, toxic effects on plants and possible phytoremediation. In: Anjum NA, Pereira MA, Ahmad I, Duarte AC, Umar S, Khan NA (eds) Phytotechnologies: remediation of environmental contaminants. Taylor and Francis/CRC Press, Boca Raton

    Google Scholar 

  • Hasanuzzaman M, Hossain MA, Fujita M (2012) Exogenous selenium pretreatment protects rapeseed seedlings from cadmium-induced oxidative stress by upregulating the antioxidant defense and methylglyoxal detoxification systems. Biol Trace Elem Res 149:248–261

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Nahar K, Fujita M (2013) Adverse effects of cadmium on plants and possible mitigation of Cd-induced damages. In: Hasanuzzaman M, Fujita M (eds) Cadmium: characteristics, sources of exposure, health and environmental effects. Nova Science Publishers Inc, Hauppauge, pp 1–48

    Google Scholar 

  • He J, Zhu C, Ren Y, Yan Y, Jiang D (2006) Genotypic variation in grain cadmium concentration of lowland rice. J Plant Nutr Soil Sci 169:711–716

    Article  CAS  Google Scholar 

  • He J, Li H, Luo J, Ma C, Li S, Qu L, Gai Y, Jiang X, Janz D, Polle A, Tyree M, Luo ZB (2013) A transcriptomic network underlies microstructural and physiological responses to cadmium in Populus × canescens. Plant Physiol 162:424–439

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • He J, Zhao X, Laroche A, Lu Z-X, Liu H, Li Z (2014) Genotyping by sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Front Plant Sci 5:484

    Article  PubMed Central  PubMed  Google Scholar 

  • Herbette S, Taconnat L, Hugouvieux V, Piette L, Magniette ML, Cuine S, Auroy P, Richaud P, Forestier C, Bourguignon J, Renou JP, Vavasseur A, Leonhardt N (2006) Genome-wide transcriptome profiling of the early cadmium response of Arabidopsis roots and shoots. Biochimie 88:1751–1765

    Article  CAS  PubMed  Google Scholar 

  • Honda R, Swaddiwudhipong W, Nishijo M, Mahasakpan P, Teeyakasem W, Ruangyuttikarn W, Satarug S, Padungtod C, Nakagawa H (2010) Cadmium induced renal dysfunction among residents of rice farming area downstream from a zinc-mineralized belt in Thailand. Toxicol Lett 198:26–32

    Article  CAS  PubMed  Google Scholar 

  • Hossain MA, Piyatida P, da Silva JAT, Fujita M (2012a) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot 2012:1–37

    Article  CAS  Google Scholar 

  • Hossain Z, Hajika M, Komatsu S (2012b) Comparative proteome analysis of high and low cadmium accumulating soybeans under cadmium stress. Amino Acids 43:2393–2416

    Article  CAS  PubMed  Google Scholar 

  • Hou L, Shi W, Shen H (2011) Cadmium uptake, translocation, and tolerance in AHA1OX Arabidopsis thaliana. Biol Trace Elem Res 139:228–240

    Article  CAS  PubMed  Google Scholar 

  • Hradilová J, Rehulka P, Rehulková H, Vrbová M, Griga M, Brzobohatý B (2010) Comparative analysis of proteomic changes in contrasting flax cultivars upon cadmium exposure. Electrophoresis 31:421–431

    Article  PubMed  CAS  Google Scholar 

  • Huang DF, Xi LL, Yang LN, Wang ZQ, Yang JC (2008) Comparison of agronomic and physiological traits of rice genotypes differing in cadmium-tolerance. Acta Agron Sin 34:809–817

    Google Scholar 

  • Huang SQ, Xiang AL, Che LL, Chen S, Li H, Song JB, Yang ZM (2010) A set of miRNAs from Brassica napus in response to sulphate deficiency and cadmium stress. Plant Biotechnol J 8:887–899

    Article  CAS  PubMed  Google Scholar 

  • Ibaraki T, Kuroyanagi N, Murakami M (2009) Practical phytoextraction in cadmium-polluted paddy fields using a high cadmium accumulating rice plant cultured by early drainage of irrigation water. Soil Sci Plant Nutr 55:421–427

    Article  CAS  Google Scholar 

  • Induri BR, Ellis DR, Slavov GT, Yin T, Zhang X, Muchero W, Tuskan GA, DiFazio SP (2012) Identification of quantitative trait loci and candidate genes for cadmium tolerance in Populus. Tree Physiol 32:626–638

    Article  CAS  PubMed  Google Scholar 

  • Ishihara T, Kobayashi E, Okubo Y, Suwazono Y, Kido T, Nishijyo M, Nakagawa H, Nogawa K (2001) Association between cadmium concentration in rice and mortality in Jinzu river basin, Japan. Toxicology 163:23–28

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa S, Ae N, Yano M (2005) Chromosomal regions with quantitative trait loci controlling cadmium concentration in brown rice (Oryza sativa). New Phytol 168:345–350

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa S, Abe T, Kuramata M, Yamaguchi M, Ando T, Yamamoto T, Yano M (2010) A major quantitative trait locus for increasing cadmium-specific concentration in rice grain is located on the short arm of chromosome 7. J Exp Bot 61:923–934

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ishikawa S, Suzui N, Ito-Tanabata S, Ishii S, Igura M, Abe T, Kuramata M, Kawachi N, Fujimaki S (2011) Real-time imaging and analysis of differences in cadmium dynamics in rice cultivars (Oryza sativa) using positron-emitting 107Cd tracer. BMC Plant Biol 11:172

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ishikawa S, Ishimaru Y, Igura M, Kuramata M, Abe T, Senoura T, Hase Y, Arao T, Nishizawa NK, Nakanishi H (2012) Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice. Proc Natl Acad Sci USA 109:19166–19171

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ishimaru Y, Takahashi R, Bashir K, Shimo H, Senoura T et al (2012) Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport. Sci Rep 2:286

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Izuno T, Sugita M, Arita S, Otahara Y, Nasu I, Tsuchiya K, Hayashi Y (2000) Validity of cadmium concentration in rice as the ‘‘dose’’ of the dose/response relationship between cadmium intake and renal dysfunction. Environ Res 84:275–281

    Article  CAS  PubMed  Google Scholar 

  • Jarup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182

    Article  PubMed  Google Scholar 

  • Jegadeesan S, Yu K, Povsa V, Gawalko E, Morrison MJ, Shi C, Cober E (2010) Mapping and validation of simple sequence repeat markers linked to a major gene controlling seed cadmium accumulation in soybean [Glycine max (L.) Merr]. Theor Appl Genet 121:283–294

    Article  CAS  PubMed  Google Scholar 

  • Jonak C, Nakagami H, Hirt H (2004) Heavy metal stress. Activation of distinct mitogen-activated protein kinase pathways by copper and cadmium. Plant Physiol 136:3276–3283

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jung MC, Thornton I (1997) Environmental contamination and seasonal variation of metals in soils, plants and waters in the paddy fields around a Pb-Zn mine in Korea. Sci Total Environ 198:105–112

    Article  CAS  PubMed  Google Scholar 

  • Kashiwagi T, Shindoh K, Hirotsu N, Ishimaru K (2009) Evidence for separate translocation pathways in determining cadmium accumulation in grain and aerial plant parts in rice. BMC Plant Biol 21(9):8

    Article  CAS  Google Scholar 

  • Khan SI, Ahmed AKM, Yunus M, Rahman M, Hore SK, Vahter M, Wahed MA (2010) Arsenic and cadmium in food-chain in Bangladesh—an exploratory study. J Health Popul Nutr 28:578–584

    PubMed Central  PubMed  Google Scholar 

  • Kieffer P, Dommes J, Hoffmann L, Hausman JF, Renaut J (2008) Quantitative changes in protein expression of cadmium-exposed poplar plants. Proteomics 8:2514–2530

    Article  CAS  PubMed  Google Scholar 

  • Kieffer P, Schröder P, Dommes J, Hoffmann L, Renaut J, Hausman JF (2009) Proteomic and enzymatic response of poplar to cadmium stress. J Proteomics 72:379–396

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi T, Okazaki M, Toyota K, Motobayashi T, Kato M (2007) The input–output balance of cadmium in a paddy field of Tokyo. Chemosphere 67:920–927

    Article  CAS  PubMed  Google Scholar 

  • Kim DY, Bovet L, Maeshima M, Martinoia E, Lee YS (2007) The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant J 50:207–218

    Article  CAS  PubMed  Google Scholar 

  • Knox RE, Pozniak CJ, Clarke FR, Clarke JM, Houshmand S, Singh AK (2009) Chromosomal location of the cadmium uptake gene (Cdu1) in durum wheat. Genome 52:741–747

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi E, Suwazono Y, Dochi M, Honda R, Kido T (2008) Influence of consumption of cadmium-polluted Rice or Jinzu River water on occurrence of renal tubular dysfunction and/or Itai-itai disease. Biol Trace Elem Res 127:257–268

    Article  PubMed  CAS  Google Scholar 

  • Kojima Y, Ebana K, Fukuoka S, Nagamine T, Kawase M (2005) Development of and RFLP-based rice diversity research set of germplasm. Breed Sci 55:431–440

    Article  CAS  Google Scholar 

  • Kong X (2014) China must protect high-quality arable land. Nature 506:7

    Article  CAS  PubMed  Google Scholar 

  • Koren’kov V, Park S, Cheng NH, Sreevidya C, Lachmansingh J, Morris J, Hirschi K, Wagner GJ (2007) Enhanced Cd2+-selective root-tonoplast-transport in tobaccos expressing Arabidopsis cation exchangers. Planta 225:403–411

    Article  PubMed  CAS  Google Scholar 

  • Korenkov V, Hirschi K, Crutchfield JD, Wagner GJ (2007) Enhancing tonoplast Cd/H antiport activity increases Cd, Zn, and Mn tolerance, and impacts root/shoot Cd partitioning in Nicotiana tabacum L. Planta 226:1379–1387

    Article  CAS  PubMed  Google Scholar 

  • Korenkov V, King B, Hirschi K, Wagner GJ (2009) Root-selective expression of AtCAX4 and AtCAX2 results in reduced lamina cadmium in field-grown Nicotiana tabacum L. Plant Biotechnol J 7:219–226

    Article  CAS  PubMed  Google Scholar 

  • Kovalchuk I, Titov V, Hohn B, Kovalchuk O (2005) Transcriptome profiling reveals similarities and differences in plant responses to cadmium and lead. Mutat Res 570:149–161

    Article  CAS  PubMed  Google Scholar 

  • Krämer U (2005) Phytoremediation: novel approaches to cleaning up polluted soils. Curr Opin Biotechnol 16:133–141

    Article  PubMed  CAS  Google Scholar 

  • Krämer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61:517–534

    Article  PubMed  CAS  Google Scholar 

  • Kubo K, Watanabe Y, Oyanagi A, Kaneko S, Chono M, Matsunka H, Seki M, Fujita M (2008) Cadmium concentration in grains of Japanese wheat cultivars: genotypic difference and relationship with agronomic characteristic. Plant Prod Sci 11:243–249

    Article  CAS  Google Scholar 

  • Kühnlenz T, Schmidt H, Uraguchi S, Clemens S (2014) Arabidopsis thaliana phytochelatin synthase 2 is constitutively active in vivo and can rescue the growth defect of the PCS1-deficient cad1-3 mutant on Cd-contaminated soil. J Exp Bot. doi:10.1093/jxb/eru195

    PubMed Central  PubMed  Google Scholar 

  • Kunihiro S, Saito T, Matsuda T, Inoue M, Kuramata M, Taguchi-Shiobara F, Youssefian S, Berberich T, Kusano T (2013) Rice DEP1, encoding a highly cysteine-rich G protein γ subunit, confers cadmium tolerance on yeast cells and plants. J Exp Bot 64:4517–4527

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lam HM, Remais J, Fung MC, Liqing Xu, Sun SSM (2013) Food supply and food safety issues in China. Lancet 381(9882):2044–2053

    Article  PubMed  Google Scholar 

  • Lasat MM (2002) Phytoextraction of toxic metals: a review of biological mechanisms. J Environ Qual 31:109–120

    Article  CAS  PubMed  Google Scholar 

  • LeBlanc MS, Lima A, Montello P, Kim T, Meagher RB, Merkle S (2011) Enhanced arsenic tolerance of transgenic eastern cottonwood plants expressing gamma-glutamylcysteine synthetase. Int J Phytoremediation  13:657–673

    Article  CAS  PubMed  Google Scholar 

  • Lee BR, Hwang S (2015a) Overexpression of NtUBQ2 encoding Ub-extension protein enhances cadmium tolerance by activating 20S and 26S proteasome in tobacco (Nicotiana tabacum). Acta Physiol Plant 37:22

    Article  CAS  Google Scholar 

  • Lee BR, Hwang S (2015b) Over-expression of NtHb1 encoding a non-symbiotic class 1 hemoglobin of tobacco enhances a tolerance to cadmium by decreasing NO (nitric oxide) and Cd levels in Nicotiana tabacum. Environ Exp Bot 113:18–27

    Article  CAS  Google Scholar 

  • Lee S, Kang BS (2005) Expression of Arabidopsis phytochelatin synthase 2 is too low to complement an AtPCS1-defective Cad1-3 mutant. Mol Cells 19:81–87

    CAS  PubMed  Google Scholar 

  • Lee S, Petros D, Moon JS, Ko TS, Goldsbrough PB, Korban SS (2003a) Higher levels of ectopic expression of Arabidopsis phytochelatin synthase do not lead to increased cadmium tolerance and accumulation. Plant Physiol Biochem 41:903–910

    Article  CAS  Google Scholar 

  • Lee S, Moon JS, Ko TS, Petros D, Goldsbrough PB, Korban SS (2003b) Over expression of Arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress. Plant Physiol 131:656–663

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee J, Shim D, Song WY, Hwang I, Lee Y (2004) Arabidopsis metallothioneins 2a and 3 enhance resistance to cadmium when expressed in Vicia faba guard cells. Plant Mol Biol 54:805–815

    Article  CAS  PubMed  Google Scholar 

  • Lee K, Bae DW, Kim SH, Han HJ, Liu X, Park HC, Lim CO, Lee SY, Chung WS (2010) Comparative proteomic analysis of the short-term responses of rice roots and leaves to cadmium. J Plant Physiol 167:161–168

    Article  CAS  PubMed  Google Scholar 

  • Li YM, Chaney RL, Schneiter AA, Miller JF, Elias EM, Hammond JJ (1997) Screening for low grain cadmium phenotypes in sunflower, durum wheat and flax. Euphytica 94:23–30

    Article  CAS  Google Scholar 

  • Li YM, Chaney RL, Schneiter AA, Miller JF, Elias EM (2002) Screening for low grain cadmium phenotypes in sunflower, durum wheat and flax. Euphytica 94:23–30

    Article  Google Scholar 

  • Li Y, Dhankher OP, Carreira L, Balish RS, Meagher RB (2005) Arsenic and mercury tolerance and cadmium sensitivity in Arabidopsis plants expressing bacterial gamma-glutamylcysteine synthetase. Environ Toxicol Chem 24:1376–1386

    Article  CAS  PubMed  Google Scholar 

  • Li JC, Guo JB, Xu WZ, Ma M (2007) RNA interference-mediated silencing of phytochelatin synthase gene reduce cadmium accumulation in rice seeds. J Integr Plant Biol 49:1032–1037

    Article  CAS  Google Scholar 

  • Li X, Ziadi N, Belanger G, Cai Z, Xu H (2011) Cadmium accumulation in wheat grain as affected by mineral N fertilizer and soil characteristics. Can J Soil Sci 91:521–531

    Article  CAS  Google Scholar 

  • Li WC, Ouyang Y, Ye ZH (2014) Accumulation of mercury and cadmium in rice from paddy soil near a mercury mine. Environ Toxicol Chem 33:2438–2447

    Article  CAS  PubMed  Google Scholar 

  • Liang Y, Lei L, Nilsson J, Li H, Nordberg M, Bernard A, Nordberg GF, Bergdahl IA, Jin T (2012) Renal function after reduction in cadmium exposure: an 8-year follow-up of residents in cadmium-polluted areas. Environ Health Perspect 120:223–228

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Limei Z, Xiaoyong L, Tongbin C, Xiulan Y, Hua X, Bin W, Lixia W (2008) Regional assessment of cadmium pollution in agricultural lands and the potential health risk related to intensive mining activities: a case study in Chenzhou City, China. J Environ Sci 20:696–703

    Article  Google Scholar 

  • Lin CY, Trinh NN, Fu SF, Hsiung YC, Chia LC, Lin CW, Huang HJ (2013) Comparison of early transcriptome responses to copper and cadmium in rice roots. Plant Mol Biol 81:507–522

    Article  CAS  PubMed  Google Scholar 

  • Lindblom SD, Abdel-Ghany S, Hanson BR, Hwang S, Terry N, Pilon-Smits EA (2006) Constitutive expression of a high-affinity sulfate transporter in Indian mustard affects metal tolerance and accumulation. J Environ Qual 35:726–733

    Article  CAS  PubMed  Google Scholar 

  • Liu JG, Liang JS, Li KQ, Zhang ZJ, Yu BY, Lu XL, Yang JC (2003a) Correlations between cadmium and mineral nutrients in absorption and accumulation in various genotypes of rice under cadmium stress. Chemosphere 52:1467–1473

    Article  CAS  PubMed  Google Scholar 

  • Liu JG, Li KQ, Xu JK, Liang JS, Lu XL, Yang JC, Zhu QS (2003b) Interaction of Cd and five mineral nutrients for uptake and accumulation in different rice cultivars and genotypes. Field Crop Res 83:271–281

    Article  Google Scholar 

  • Liu J, Zhu Q, Zhang Z, Xu J, Yang J, Wang MH (2005) Variation in cadmium accumulation among rice cultivars and types and the selection of cultivars for reducing cadmium in the diet. J Sci Food Agric 85:147–153

    Article  CAS  Google Scholar 

  • Liu J, Qian M, Cai G, Yang J, Zhu Q (2007) Uptake and translocation of Cd in different rice cultivars and the relation with Cd accumulation in rice grain. J Hazard Mater 143:443–447

    Article  CAS  PubMed  Google Scholar 

  • Liu WT, Zhou QX, Sun YB, Liu R (2009) Identification of Chinese cabbage genotypes with low cadmium accumulation for food safety. Environ Pollut 157:1961–1967

    Article  CAS  PubMed  Google Scholar 

  • Liu XM, Kim KE, Kim KC, Nguyen XC, Han HJ, Jung MS et al (2010a) Cadmium activates Arabidopsis MPK3 and MPK6 via accumulation of reactive oxygen species. Phytochemistry 71:614–618

    Article  CAS  PubMed  Google Scholar 

  • Liu WT, Zhou QX, An J, Sun YB, Liu R (2010b) Variations in cadmium accumulation among Chinese cabbage cultivars and screening for Cd-safe cultivars. J Hazard Mater 173:737–743

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Qu P, Zhang W, Dong Y, Li L, Wang M (2014) Variations among rice cultivars in subcellular distribution of Cd: the relationship between translocation and grain accumulation. Environ Exp Bot 107:25–31

    Article  CAS  Google Scholar 

  • Lombi E, Zhao FJ, McGrath SP, Young SD, Sacchi GA (2001) Physiological evidence for a high-affinity cadmium transporter highly expressed in a Thlaspi caerulescens ecotype. New Phytol 149:53–60

    Article  CAS  Google Scholar 

  • Lu LL, Tian SK, Yang XE et al (2008) Enhanced root-to-shoot translocation of cadmium in the hyperaccumulating ecotype of Sedum alfredii. J Exp Bot 59:3203–3213

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ma LQ, Komar KM, Tu C, Zhang WH, Cai Y, Kennelley ED (2001) A fern that hyperaccumulates arsenic—a hardy, versatile, fast-growing plant helps to remove arsenic from contaminated soils. Nature 409:579

    Article  CAS  PubMed  Google Scholar 

  • Maestri E, Marmiroli M, Visioli G, Marmiroli N (2010) Metal tolerance and hyperaccumulation: costs and trade-offs between traits and environment. Environ Exp Bot 68:1–13

    Article  CAS  Google Scholar 

  • Matsuda K, Kobayashi E, Okubo  Y, Suwazono Y, Kido T, Nishijo M, Nakagawa H, Nogawa K (2003) Total Cadmium Intake and Mortality among Residents in the Jinzu River Basin, Japan. Arch Environ Health: Int J 58(4):218–222

    Article  Google Scholar 

  • Meharg AA (2002) Arsenic and old plants. New Phytol 156:1–8

    Article  Google Scholar 

  • Meharg AA, Norton G, Deacon C, Williams P, Adomako EE, Price A, Zhu Y, Li G, Zhao FJ, McGrath S, Villada A, Sommella A, Mangala P, De Silva CS, Brammer H, Dasgupta T, Islam MR (2013) Variation in rice cadmium related to human exposure. Environ Sci Technol 47:5613–5618

    Article  CAS  PubMed  Google Scholar 

  • Mendoza-Cózatl DG, Jobe TO, Hauser F, Schroeder JI (2011) Long distance transport, vacuolar sequestration, tolerance, and transcriptional responses induced by cadmium and arsenic. Curr Opin Plant Biol 14:554–562

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mendoza-Soto AB, Sánchez F, Hernández G (2012) MicroRNAs as regulators in plant metal toxicity response. Front Plant Sci 3:105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meyers MW, Fricke FL, Holmgren GG, Kubota SJ, Chaney RL (1982) Cadmium and lead in wheat grain and associated surface soils of major wheat production areas in United States. Agronomy Abstract 34

  • Michele RD, Vurro E, Rigo C, Costa A, Li Elvir, Valentin MD, Careri M, Zottini M, di Toppi LS, Schiavo FL (2009) Nitric oxide is involved in cadmium-induced programmed cell death in Arabidopsis suspension cultures. Plant Physiol 150:217–228

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Migeon A, Blaudez D, Wilkins O, Montanini B, Campbell MM, Richaud P, Thomine S, Chalot M (2010) Genome-wide analysis of plant metal transporters, with an emphasis on poplar. Cell Mol Life Sci 67:3763–3784

    Article  CAS  PubMed  Google Scholar 

  • Mills RF, Francini A, Ferreira da Rocha PS, Baccarini PJ, Aylett M, Krijger GC, Williams LE (2005) The plant P1B-type ATPase AtHMA4 transports Zn and Cd and plays a role in detoxification of transition metals supplied at elevated levels. FEBS Lett 579:783–791

    Article  CAS  PubMed  Google Scholar 

  • Mills RF, Valdes B, Duke M, Peaston KA, Lahner B, Salt DE, Williams LE (2010) Functional significance of AtHMA4 C-terminal domain in planta. PLoS ONE 5:e13388

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mills RF, Kerry A, Peaston JR, Williams LE (2012) HvHMA2, a P1BATPase from barley, is highly conserved among cereals and functions in Zn and Cd transport. PLoS ONE 7:e42640

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Milner MJ, Mitani-Ueno N, Yamaji N, Yokosho K, Craft E, Fei Z, Ebbs S, Clemencia Zambrano M, Ma JF, Kochian LV (2014) Root and shoot transcriptome analysis of two ecotypes of Noccaea caerulescens uncovers the role of NcNramp1 in Cd. Plant J 78:398–410

    Article  CAS  PubMed  Google Scholar 

  • Mishima S, Kimura R, Inoue T (2004) Estimation of cadmium load on Japanese farmland associated with the application of chemical fertilizers and livestock excreta. Soil Sci Plant Nutr 50:263–267

    Article  CAS  Google Scholar 

  • Misra S, Gedamu L (1989) Heavy metal tolerant transgenic Brassica napus L. and Nicotiana tabacum L. plants. Theor Appl Genet 78:161–168

    Article  CAS  PubMed  Google Scholar 

  • Miyadate H, Adachi S, Hiraizumi A, Tezuka K, Nakazawa N, Kawamoto T, Katou K, Kodama I, Sakurai K, Takahashi H, Satoh-Nagasawa N, Watanabe A, Fujimura T, Akagi H (2011) OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles. New Phytol 189:190–199

    Article  CAS  PubMed  Google Scholar 

  • Mobin M, Khan NA (2007) Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. J Plant Physiol 164:601–610

    Article  CAS  PubMed  Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2007) Cadmium induced oxidative stress influence on glutathione metabolic genes of Camellia sinensis (L.) O. Kuntze. Environ Toxicol 22:368–374

    Article  CAS  PubMed  Google Scholar 

  • Morel M et al (2009) AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis. Plant Physiol 149:894–904

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Murakami M, Ae N, Ishikawa S (2007) Phytoextraction of cadmium by rice (Oryza sativa L.), soybean (Glycine max (L.) Merr.), and maize (Zea mays L.). Environ Pollut 145:96–103

    Article  CAS  PubMed  Google Scholar 

  • Murakami M, Nakagawa F, Ae N, Ito M, Arao T (2009) Phytoextraction by rice capable of accumulating Cd at high levels: reduction of Cd content of rice grain. Environ Sci Technol 43:5878–5883

    Article  CAS  PubMed  Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216

    Article  CAS  Google Scholar 

  • Nakanishi H, Ogawa I, Ishimaru Y, Mori S, Nishizawa NK (2006) Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRT1 and OsIRT2 in rice. Soil Sci Plant Nutr 52:464–469

    Article  CAS  Google Scholar 

  • Nawrot T et al (2006) Environmental exposure to cadmium and risk of cancer: a prospective population-based study. Lancet Oncol 7:119–126

    Article  CAS  PubMed  Google Scholar 

  • Ning H, Zhang C, Yao Y, Yu D (2010) Over expression of a soybean O-acetylserine (thiol) lyase-encoding geneGmOASTL4 in tobacco increases cysteine levels and enhances tolerance to cadmium stress. Biotechnol Lett 32:557–564

    Article  CAS  PubMed  Google Scholar 

  • Nocito FF, Lancilli C, Dendena B, Luccihini G, Sacchi GA (2011) Cadmium retention in rice roots is influenced by cadmium availability, chelation and translocation. Plant, Cell Environ 34:994–1008

    Article  CAS  Google Scholar 

  • Nogawa K, Kobayashi E, Okubo Y, Suwazono Y (2004) Environmental cadmium exposure, adverse effects and preventive measures in Japan. Biometals 17:581–587

    Article  CAS  PubMed  Google Scholar 

  • Nordberg GF, Jin T, Kong Q, Ye T, Cai S, Wang Z, Zhuang F, Wu X (1997) Biological monitoring of cadmium exposure and renal effects in a population group residing in a polluted area in China. Sci Total Environ 199:111–114

    Article  CAS  PubMed  Google Scholar 

  • Nordberg G, Jin T, Bernard A, Fierens S, Buchet JP, Ye T et al (2002) Low bone density and renal dysfunction following environmental cadmium exposure in China. Ambio 31:478–481

    Article  PubMed  Google Scholar 

  • Norton GJ, Deacon CM, Xiong L, Huang S, Meharg AA, Price AH (2009) Genetic mapping of the rice ionome in leaves and grain: identification of QTLs for 17 elements including arsenic, cadmium, iron and selenium. Plant Soil. doi:10.1007/s11104-009-0141-8

    Google Scholar 

  • Oono Y, Yazawa T, Kawahara Y, Kanamori H, Kobayashi F, Sasaki H, Mori S, Wu J, Handa H, Itoh T, Matsumoto T (2014) Genome-wide transcriptome analysis reveals that cadmium stress signaling controls the expression of genes in drought stress signal pathways in rice. PLoS ONE 9:e96946

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Osada M, Izuno T, Kobayashi M, Sugita M (2011) Relationship between environmental exposure to cadmium and bone metabolism in a non-polluted area of Japan. Environ Health Prev Med 16:341–349

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ovecka M, Takac T (2014) Managing heavy metal toxicity stress in plants: biological and biotechnological tools. Biotechnol Adv 32:73–86

    Article  CAS  PubMed  Google Scholar 

  • Park J, Song WY, Ko D, Eom Y, Hansen TH, Schiller M, Lee TG, Martinoia E, Lee Y (2012) The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. Plant J 69:278–288

    Article  CAS  PubMed  Google Scholar 

  • Pavlíková D, Macek T, Macková M, Száková J, Balík J (2004) Cadmium tolerance and accumulation in transgenic tobacco plants with a yeast metallothionein combined with a polyhistidine tail. Int Biodeterior Biodegrad 54:233–237

    Article  CAS  Google Scholar 

  • Penner GA, Clarke J, Bezte LJ, Leisle D (1995) Identification of RAPD markers linked to a gene governing cadmium uptake in durum wheat. Genome 38:543–547

    Article  CAS  PubMed  Google Scholar 

  • Perfus-Barbeoch L, Leonhardt N, Vavasseur A, Forestier C (2002) Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. Plant J 32:539–548

    Article  CAS  PubMed  Google Scholar 

  • Picault N, Cazalé AC, Beyly A, Cuiné S, Carrier P, Luu DT, Forestier C, Peltier G (2006) Chloroplast targeting of phytochelatin synthase in Arabidopsis: effects on heavy metal tolerance and accumulation. Biochimie 88:1743–1750

    Article  CAS  PubMed  Google Scholar 

  • Pollard AJ, Powell KD, Harper FA, Smith JAC (2002) The genetic basis of metal hyperaccumulation in plants. Crit Rev Plant Sci 21:539–566

    Article  CAS  Google Scholar 

  • Polle A, Schuetzenduebel A (2003) Heavy metal signalling in plants: linking cellular and organismic responses. In: Hirt H, Shinozaki K (eds) Plant responses to abiotic stress. Springer, Berlin-Heidelberg, pp 187–215

    Chapter  Google Scholar 

  • Pomponi M, Censi V, Di Girolamo V, De Paolis A, di Toppi LS, Aromolo R, Costantino P, Cardarelli M (2006) Overexpression of Arabidopsis phytochelatin synthase in tobacco plants enhances Cd(2 +) tolerance and accumulation but not translocation to the shoot. Planta 223:180–190

    Article  CAS  PubMed  Google Scholar 

  • Pourghasemian N, Ehsanzadeh P, Greger M (2013) Genotypic variation in safflower (Carthamus spp.) cadmium accumulation and tolerance affected by temperature and cadmium levels. Environ Exp Bot 87:218–226

    Article  CAS  Google Scholar 

  • Pozniak CJ (2013) CDC Vivid durum wheat. Can J Plant Sci 93:137–141

    Article  Google Scholar 

  • Pozniak CJ, Fox SL, Knott DR (2009) CDC Verona durum wheat. Can J Plant Sci 89:321–324

    Article  Google Scholar 

  • Prasad MNV (1999) Metallothioneins and metal binding complexes in plant. In: Prasad MNV, Hagemeyer J (eds) Heavy metal stress in plant: from molecule to ecosystem. Springer, Berlin, pp 51–72

    Chapter  Google Scholar 

  • Qin P, Wang L, Liu K, Mao S, Li Z, Gao S, Shi S, Liu X (2015) Genome wide association study of Aegilops tauschii traits under seedling-stage cadmium stress. Crop J. doi:10.1016/j.cj.2015.04.005

    Google Scholar 

  • Rahman MA, Rahman MM, Reichman SM, Lim R, Naidu R (2014) Heavy metals in Australian grown and imported rice and vegetables on sale in Australia: health hazard. Ecotoxicol Environ Saf 100:53–60

    Article  CAS  PubMed  Google Scholar 

  • Ramesh SA, Shin R, Eide DJ, Schachtman DP (2003) Differential metal selectivity and gene expression of two zinc transporters from rice. Plant Physiol 133:126–134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169–181

    Article  CAS  PubMed  Google Scholar 

  • Rauser WE (1995) Phytochelatins and related peptides. Structure, biosynthesis and function. Plant Physiol 109:1141–1149

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Riesen O, Feller U (2005) Redistribution of nickel, cobalt, manganese, zinc and cadmium via the phloem in young and in maturing wheat. J Plant Nutr 28:421–430

    Article  CAS  Google Scholar 

  • Rodríguez-Serrano M, Romero-Puertas MC, Pazmino DM, Testillano PS, Risueno MC, DelRío LA et al (2009) Cellular response of pea plants to cadmium toxicity: cross talk between reactive oxygen species, nitric oxide, and calcium. Plant Physiol 150:229–243

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Roosens N, Verbruggen N, Meerts P, Ximenez-Embun P, Smith JAC (2003) Natural variation in cadmium tolerance and its relationship to metal hyperaccumulation for seven populations of Thlaspi caerulescens from Western Europe. Plant, Cell Environ 26:1657–1672

    Article  CAS  Google Scholar 

  • Rout GR, Samantaray S, Das P (2000) Differential cadmium tolerance of mung bean and rice genotypes in hydroponic culture. Acta Agric Scand Sect B Soil Plant Sci 49:234–241

    Google Scholar 

  • Saito T (2004) Cadmium input from rainfall into fields in the city of Tsukuba. NIAES Annual Report 2004. National Institute for Agro-Environmental Sciences, Tsukuba, pp 54–55

  • Salazar MJ, Rodriguez JH, Nieto GL, Pignata ML (2012) Effects of heavy metal concentrations (Cd, Zn and Pb) in agricultural soils near different emission sources on quality, accumulation and food safety in soybean [Glycine max (L.) Merrill]. J Hazard Mater 233–234:244–253

    Article  PubMed  CAS  Google Scholar 

  • Salt DE, Rauser WE (1995) Mg ATP-dependent transport of phytochelatins across the tonoplast of oat roots. Plant Physiol 107:1293–1301

    PubMed Central  CAS  PubMed  Google Scholar 

  • Salt DE, Wanger GJ (1993) Cadmium transport across tonoplast of vesicles from oat roots. Evidence for a Cd2+/H+ antiport activity. J Biol Chem 268:12297–12302

    CAS  PubMed  Google Scholar 

  • Salt DE, Blaylock M, Kumar NPBA, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13:468–474

    Article  CAS  PubMed  Google Scholar 

  • Sandalio LM, Dalurzo HC, Gomez M, Romero-Puertas MC, del Rio LA (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plant. J Exp Bot 52:2115–2126

    CAS  PubMed  Google Scholar 

  • Sanitá di Toppi L, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130

    Article  Google Scholar 

  • Sanjaya Hsiao PY, Su RC, Ko SS, Tong CG, Yang RY, Chan MT (2008) Overexpression of Arabidopsis thaliana tryptophan synthase beta 1 (AtTSB1) in Arabidopsis and tomato confers tolerance to cadmium stress. Plant, Cell Environ 31:1074–1085

    Article  CAS  Google Scholar 

  • Sasaki A, Yamaji Y, Yokosho K, Ma JF (2012) Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell 24:2155–2167

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sasaki A, Yamaji N, Ma JF (2014) Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice. J Exp Bot. doi:10.1093/jxb/eru340

    Google Scholar 

  • Satarug S, Garrett SH, Sens MA, Sens DA (2010) Cadmium, environmental exposure, and health outcomes. Environ Health Perspect 118:182–190

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sato H, Shirasawa S, Maeda H, Nakagomi K, Kaji R, Ohta H, Yamaguchi M, Nishio T (2011) Analysis of QTL for lowering cadmium concentration in rice grains from ‘LAC23’. Breed Sci 61:196–200

    Article  CAS  Google Scholar 

  • Satoh-Nagasawa N, Mori M, Nakazawa N, Kawamoto T, Nagato Y, Sakurai K, Takahashi H, Watanabe A, Akagi H (2012) Mutations in rice (Oryza sativa) heavy metal ATPase 2 (OsHMA2) restrict the translocation of zinc and cadmium. Plant Cell Physiol 53:213–224

    Article  CAS  PubMed  Google Scholar 

  • Semane B, Dupae J, Cuypers A, Noben JP, Tuomainen M, Tervahauta A, Kärenlampi S, Van Belleghem F, Smeets K, Vangronsveld J (2010) Leaf proteome responses of Arabidopsis thaliana exposed to mild cadmium stress. J Plant Physiol 167:247–254

    Article  CAS  PubMed  Google Scholar 

  • Sergeant K, Kieffer P, Dommes J, Hausman JF, Renaut J (2014) Proteomic changes in leaves of poplar exposed to both cadmium and low-temperature. Environ Exp Bot 106:112–123

    Article  CAS  Google Scholar 

  • Sharma S, Dietz KJ (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Li L, Pan G (2009) Variation of grain Cd and Zn concentrations of 110 hybrid rice cultivars grown in a low-Cd paddy soil. J Environ Sci (China) 21:168–172

    Article  CAS  Google Scholar 

  • Shim D, Hwang JU, Lee J, Lee S, Choi Y, An G, Martinoia E, Lee Y (2009) Orthologs of the class A4 heat shock transcription factor HsfA4a confer cadmium tolerance in wheat and rice. Plant Cell 21:4031–4043

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shimbo S, Zhang ZW, Watanabe T, Nakatsuka H, Matsuda-Inoguchi N, Higashikawa K, Ikeda M (2001) Cadmium and lead contents in rice and other cereal products in Japan in 1998–2000. Sci Total Environ 281:165–175

    Article  CAS  PubMed  Google Scholar 

  • Shimo H, Ishimura Y, An G, Yamakawa T, Nakanishi H, Nishizawa NK (2011) Low cadmium (LCD), a novel gene related to cadmium tolerance and accumulation in rice. J Exp Bot. doi:10.1093/jxb/err300

    Google Scholar 

  • Shu WS (1997) Revegetation of lead/zinc maine tailings. Ph.D.Thesis, Zhongshan University, Guangzhou, P.R. China

  • Shukla D, Kesari R, Mishra S, Dwivedi S, Tripathi RD, Nath P, Trivedi PK (2012) Expression of phytochelatin synthase from aquatic macrophyte Ceratophyllum demersum L. enhances cadmium and arsenic accumulation in tobacco. Plant Cell Rep 31:1687–1699

    Article  CAS  PubMed  Google Scholar 

  • Shute T, Macfie SM (2006) Cadmium and zinc accumulation in soybean: a threat to food safety? Sci Total Environ 371:63–73

    Article  CAS  PubMed  Google Scholar 

  • Siemianowski O, Mills RF, Williams LE, Antosiewicz DM (2011) Expression of the P-1B-type ATPase AtHMA4 in tobacco modifies Zn and Cd root to shoot partitioning and metal tolerance. Plant Biotechnol J 9:64–74

    Article  CAS  PubMed  Google Scholar 

  • Siemianowski O, Barabasz A, Kendziorek M, Ruszczyńska A, Bulska E, Williams LE, Antosiewicz DM (2014) HMA4 expression in tobacco reduces Cd accumulation due to the induction of the apoplastic barrier. J Exp Bot 165:125–1139

    Google Scholar 

  • Simmon RW, Pongsakul P, Saiyasitpanich D, Klinphoklap S (2005) Elevated levels of cadmium and zinc in paddy soils and elevated levels of cadmium in rice grain downstream of a zinc mineralized area in Thailand: implications for public health. Environ Geochem Health 27:501–511

    Article  CAS  Google Scholar 

  • Singh S, Eapen S, D’Souza SF (2006) Cadmium accumulation and its influence on lipid per oxidation and antioxidative system in an aquatic plant, Bacopa monnieri L. Chemosphere 62:233–246

    Article  CAS  PubMed  Google Scholar 

  • Song WY, Sohn EJ, Martinoia E, Lee YJ, Yang YY, Jasinski M, Forestier C, Hwang I, Lee Y (2003) Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nat Biotechnol 21:914–919

    Article  CAS  PubMed  Google Scholar 

  • Sriprachote A, Kanyawongha P, Ochiai K, Matoh T (2012) Current situation of cadmium-polluted paddy soil, rice and soybean in the Mae Sot District, Tak Province, Thailand. Soil Sci Plant Nutr 58:349–359

    Article  CAS  Google Scholar 

  • Srivastava S, Srivastava AK, Suprasanna P, D’Souza F (2013) Identification and profiling of arsenic stress-induced microRNAs in Brassica juncea. J Exp Bot 64:303–315

    Article  CAS  PubMed  Google Scholar 

  • Steffens JC (1990) The heavy-metal binding peptides of plants. Annu Rev Plant Physiol Plant Mol Biol 41:553–575

    Article  CAS  Google Scholar 

  • Stobart AK, Griffits W, Bukhari IA, Sherwood RP (1985) The effects of Cd2+ on the biosynthesis of chlorophyll in leaves of barley. Physiol Plant 63:293–298

    Article  CAS  Google Scholar 

  • Stroinski A, Gizewska K, Zielezinska M (2013) Abscisic acid is required in transduction of cadmium signal to potato roots. Biol Plant 57:121–127

    Article  CAS  Google Scholar 

  • Sugiyama M, Ae N, Hajika M (2011) Developing of a simple method for screening soybean seedling cadmium accumulation to select soybean genotypes with low seed cadmium. Plant Soil 341:413–422

    Article  CAS  Google Scholar 

  • Suzuki N, Koizumi N, Sano H (2001) Screening of cadmium responsive genes in Arabidopsis thaliana. Plant, Cell Environ 24:1177–1188

    Article  CAS  Google Scholar 

  • Takahashi Y, Shomura A, Sasaki T, Yano M (2001) Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the alpha subunit of protein kinase CK2. Proc Natl Acad Sci USA 98:7922–7927

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Takahashi R, Ishimaru Y, Senoura T, Shimo H, Ishikawa S, Arao T, Nakanishi H, Nishizawa NK (2011) The OsNRAMP1 iron transporter is involved in Cd accumulation in rice. J Exp Bot 62:4843–4850

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Takahashi R, Ishimaru Y, Shimo H, Ogo Y, Senoura T, Nishizawa NK, Nakanishi H (2012a) The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice. Plant, Cell Environ 35:1948–1957

    Article  CAS  Google Scholar 

  • Takahashi R, Bashir K, Ishimaru Y, Nishizawa NK, Nakanishi H (2012b) The role of heavy-metal ATPases, HMAs, in zinc and cadmium transport in rice. Plant Signal Behav 7:1605–1607

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Takahashi R, Ishimaru Y, Shimo H, Bashir K, Senoura T, Sugimoto K, Ono K et al (2014) From laboratory to field: OsNRAMP5-knockdown rice is a promising candidate for Cd phytoremediation in paddy fields. PLoS ONE 9:e98816

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tazib T, Ikka T, Kuroda K, Kobayashi Y, Kimura K, Koyama H (2009) Quantitative trait loci controlling resistance to cadmium rhizotoxicity in two recombinant inbred populations of Arabidopsis thaliana are partially shared by those for hydrogen peroxide resistance. Physiol Plant 136:395–406

    Article  CAS  PubMed  Google Scholar 

  • Teeyakasem W, Nishijo M, Honda R, Satarug S, Swaddiwudhipong W, Ruangyuttikarn W (2007) Monitoring of cadmium toxicity in a Thai population with high-level environmental exposure. Toxicol Lett 169:185–195

    Article  CAS  PubMed  Google Scholar 

  • Tezuka K, Miyadate H, Katou K, Kodama I, Matsumoto S, Kawamoto T, Masaki S, Satoh H, Yamaguchi M, Sakurai K, Takahashi H, Satoh-Nagasawa N, Watanabe A, Fujimura T, Akagi H (2010) A single recessive gene controls cadmium translocation in the cadmium hyper accumulating rice cultivar Cho-Ko-Koku. Theor Appl Genet 120:1175–1182

    Article  CAS  PubMed  Google Scholar 

  • Thomine S, Wang RC, Ward JM, Crawford NM, Schroeder JI (2000) Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proc Natl Acad Sci USA 97:4991–4996

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tiwari M, Sharma D, Dwivedi S, Singh M, Tripathi RD, Trivedi PK (2014) Expression in Arabidopsis and cellular localization reveal involvement of rice NRAMP, OsNRAMP1, in arsenic transport and tolerance. Plant, Cell Environ 37:140–152

    Article  CAS  Google Scholar 

  • Tripathi RD et al (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol 25:158–165

    Article  CAS  PubMed  Google Scholar 

  • Tsukahara T, Ezaki T, Moriguchi J, Furuki K, Shimbo S, Matsuda-Inoguchi Ikeda M (2003) Rice as the most influential source of cadmium intake among general Japanese population. Tot Sci Environ 305:41–51

    Article  CAS  Google Scholar 

  • Ueno D, Kono I, Yokosho K, Ando T, Yano M, Ma JF (2009a) A major quantitative trait locus controlling cadmium translocation in rice (Oryza sativa). New Phytol 182:644–653

    Article  CAS  PubMed  Google Scholar 

  • Ueno D, Koyama E, Kono I, Ando T, Yano M, Ma JF (2009b) Identification of a novel major quantitative trait locus controlling distribution of Cd between roots and shoots in rice. Plant Cell Physiol 50:2223–2233

    Article  CAS  PubMed  Google Scholar 

  • Ueno D, Yamaji N, Kono I, Huang CF, Ando T, Yano M, Ma JF (2010) Gene limiting cadmium accumulation in rice. Proc Natl Acad Sci USA 107:16500–16505

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ueno D, Koyama E, Yamaji N, Ma JF (2011) Physiological, genetic, and molecular characterization of a high-Cd-accumulating rice cultivar, Jarjan. J Exp Bot 62:2265–2272

    Article  CAS  PubMed  Google Scholar 

  • Uetani M, Kobayashi E, Suwazono Y, Honda R, Nishijo M, Nakagawa H, Kido T, Nogawa K (2006) Tissue cadmium (Cd) concentrations of people living in a Cd polluted area, Japan. Biometals 19:521–525

    Article  CAS  PubMed  Google Scholar 

  • UNEP (United Nations Environment Programme) (2008) Draft Final Review of Scientific Information on Cadmium. http://www.unep.org/hazardoussubstances/Portals/9/Lead_Cadmium/docs/Interim_reviews/Final_UNEP_Cadmium_review_Nov_2008.pdf

  • Uraguchi S, Fujiwara T (2012) Cadmium transport and tolerance in rice: perspectives for reducing grain cadmium accumulation. Rice 5:5

    Article  PubMed Central  PubMed  Google Scholar 

  • Uraguchi S, Fujiwara T (2013) Rice breaks ground for cadmium-free cereals. Curr Opin Plant Biol 16:328–334

    Article  CAS  PubMed  Google Scholar 

  • Uraguchi S, Mori S, Kuramata M, Kawasaki A, Arao T, Ishikawa S (2009) Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice. J Exp Bot 60:2677–2688

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Uraguchi S, Kamiya T, Sakamoto T, Kasai K, Sato Y, Nagamura Y, Yoshida A, Kyozuka J, Ishikawa S, Fujiwara T (2011) Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains. Proc Natl Acad Sci USA 108:20959–20964

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Venkataramaiah N, Ramakrishna SV, Sreevathsa R (2011) Overexpression of phytochelatin synthase (AtPCS) in rice for tolerance to cadmium stress. Biol Plant 66:1060–1073

    CAS  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Mechanisms to cope with arsenic or cadmium excess in plants. Curr Opin Plant Biol 12:364–372

    Article  CAS  PubMed  Google Scholar 

  • Verbruggen N, Hanikenne M, Clmens S (2013) A more complete picture of metal hyperaccumulation through next-generation sequencing technologies. Front Plant Sci 4:1–7

    Article  Google Scholar 

  • Verret F, Gravot A, Auroy P, Leonhardt N, David P, Nussaume L, Vavasseur A, Richaud P (2004) Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance. FEBS Lett 576:306–312

    Article  CAS  PubMed  Google Scholar 

  • Visoottiviseth P, Francesconi K, Sridokchan W (2002) The potential of Thai indigenous plant species for the phytoremediation of arsenic contaminated land. Environ Pollut 118:453–461

    Article  CAS  PubMed  Google Scholar 

  • Vollmann J, Losak T, Pachner M, Watanabe D, Musilova L, Hlusek J (2014) Soybean cadmium concentration: validation of a QTL affecting seed cadmium accumulation for improved food safety. Euphytica. doi:10.1007/s10681-014-1297-8

    Google Scholar 

  • Wang Y, Bjorn LO (2014) Heavy metal pollution in Guangdong Province, China, and the strategies to manage the situation. Front Plant Sci 2:1–12

    CAS  Google Scholar 

  • Wang F, Wang Z, Zhu C (2012) Hetero expression of the wheat phytochelatin synthase gene (TaPCS1) in rice enhances cadmium sensitivity. Acta Biochim Biophys Sin (Shanghai) 44:886–893

    Article  CAS  Google Scholar 

  • Wang Y, Xiao X, Zhang T, Kang H, Zeng J, Fan X, Sha L, Zhang H, Yu K, Zhou Y (2014a) Cadmium treatment alters the expression of five genes at the Cda1 locus in two soybean cultivars [Glycine Max (L.) Merr]. Sci World J 2014:1–8

    Google Scholar 

  • Wang Z, Hu X, Xu Z, Cai L, Wang J, Zeng D, Hong H (2014b) Cadmium in agricultural soils, vegetables and rice and potential health risk in vicinity of Dabaoshan Mine in Shaoguan, China. J Cent South Univ 21:2004–2010

    Article  CAS  Google Scholar 

  • Wangeline AL, Burkhead JL, Hale KL, Lindblom SD, Terry N, Pilon M, Pilon-Smits EA (2004) Overexpression of ATP sulfurylase in Indian mustard: effects on tolerance and accumulation of twelve metals. J Environ Qual 33:54–60

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T, Nakatsuka H, Ikeda M (1989) Cadmium and lead contents in rice available in various areas of Asia. Sci Total Environ 80:175–184

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T, Shimbo S, Moon CS, Zhang ZW, Ikeda M (1996) Cadmium contents in rice samples from various areas in the world. Sci Tot Environ 184:191–196

    Article  CAS  Google Scholar 

  • Watanabe T, Zhang ZW, Moon CS, Shimbo S, Nakatsuka H, Matsuda-Inoguchi N, Higashikawa K, Ikeda M (2000) Cadmium exposure of women in general populations in Japan during 1991–1997 compared with 1977–1981. Int Arch Occup Environ Health 73:26–34

    Article  CAS  PubMed  Google Scholar 

  • Watanabe Y, Kobayashi E, Okubo Y, Suwazono Y, Kido T, Nogawa K (2002) Relationship between cadmium concentration in rice and renal dysfunction in individual subjects of the Jinzu River basin determined using a logistic regression analysis. Toxicol 172:93–101

    Article  CAS  Google Scholar 

  • Watanabe T, Shimbo S, Nakatsuka H, Koizumi A, Higashikawa K, Matsuda-Inoguchi N et al (2004) Gender-related difference, geographical variation and time trend in dietary cadmium intake in Japan. Sci Total Environ 329:17–27

    Article  CAS  PubMed  Google Scholar 

  • White PJ, Brown PH (2010) Plant nutrition for sustainable development and global health. Ann Bot 105:1073–1080

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wiebe K, Harris NS, Faris JD, Clarke JM, Knox RE, Taylor GJ, Pozniak CJ (2010) Targeted mapping of Cdu1, a major locus regulating grain cadmium concentration in durum wheat (Triticum turgidum L. var durum). Theor Appl Genet 121:1047–1058

    Article  CAS  PubMed  Google Scholar 

  • William PN, Lei M, Sun G, Huang Q, Lu Y, Deacon C, Meharg AA, Zhu YG (2009) Occurrence and partitioning of cadmium, arsenic and lead in mine impacted paddy rice: Hunan, China. Environ Sci Technol 43:637–642

    Article  CAS  Google Scholar 

  • Wojas S, Clemens S, Hennig J, Sklodowska A, Kopera E, Schat H, Bal W, Antosiewicz DM (2008) Overexpression of phytochelatin synthase in tobacco: distinctive effects of AtPCS1 and CePCS genes on plant response to cadmium. J Exp Bot 59:2205–2219

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wojas S, Hennig J, Plaza S, Geisler M, Siemianowski O, Skłodowska A, Ruszczyńska A, Bulska E, Antosiewicz DM (2009) Ectopic expression of Arabidopsis ABC transporter MRP7 modifies cadmium root-to-shoot transport and accumulation. Environ Pollut 157:2781–2789

    Article  CAS  PubMed  Google Scholar 

  • Wojas S, Ruszczyńska A, Bulska E, Clemens S, Antosiewicz DM (2010) The role of subcellular distribution of cadmium and phytochelatins in the generation of distinct phenotypes of AtPCS1- and CePCS3-expressing tobacco. J Plant Physiol 167:981–988

    Article  PubMed  CAS  Google Scholar 

  • Wong CK, Cobbett CS (2009) HMA P-type ATPases are the major mechanism for root-to-shoot Cd translocation in Arabidopsis thaliana. New Phytol 181:71–78

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Liang Y, Jin T, Ye T, Kong Q, Wang Z et al (2008) Renal effects evolution in a Chinese population after reduction of cadmium exposure in rice. Environ Res 108:233–238

    Article  CAS  PubMed  Google Scholar 

  • Wu Q, Shigaki T, Williams KA, Han JS, Kim CK, Hirschi KD, Park S (2011) Expression of an Arabidopsis Ca2+/H+ antiporter CAX1 variant in petunia enhances cadmium tolerance and accumulation. J Plant Physiol 168:167–173

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Chen C, Du J, Liu H, Cui Y, Zhang Y, He Y, Wang Y, Chu C, Feng Z, Li J, Ling HQ (2012) Co-over expression FIT with AtbHLH38 or AtbHLH39 in Arabidopsis-enhanced cadmium tolerance via increased cadmium sequestration in roots and improved iron homeostasis of shoots. Plant Physiol 158:790–800

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu L, Ge Q, Zhang J, Zhou J, Xu J (2013) Proteomic analysis of Cd-responsive proteins in Solanum torvum. Plant Mol Biol Rep 31:485–491

    Article  CAS  Google Scholar 

  • Wu D, Sato K, Ma JF (2015) Genome-wide association mapping of cadmium accumulation in different organs of barley. New Phytol. doi:10.1111/nph.13512

    Google Scholar 

  • Xie W, Yang J, Chen S, Chen D (2008) Variation of Cd, Pb, Hg contents of rice in coastal region of Fujian province. Ecol Environ  17:206–209

    Google Scholar 

  • Xu W, Shi W, Liu F, Ueda A, Takabe T (2008) Enhanced zinc and cadmium tolerance and accumulation in transgenic Arabidopsis plants constitutively overexpressing a barley gene (HvAPX1) that encodes a peroxisomal ascorbate peroxidase. Botany 86:567–575

    Article  CAS  Google Scholar 

  • Xu L, Wang L, Gong Y, Dai W, Wang Y, Zhu X, Wen T, Liu L (2012) Genetic linkage map construction and QTL mapping of cadmium accumulation in radish (Raphanus sativus L.). Theor Appl Genet 125:659–670

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Wang Y, Zhai L, Xu Y, Wang L, Zhu X, Gong Y, Yu R, Limera C, Liu L (2013) Genome-wide identification and characterization of cadmium-responsive microRNAs and their target genes in radish (Raphanus sativus L.) roots. J Exp Bot 64:4271–4287

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xue D, Chen M, Zhang G (2009) Mapping of QTLs associated with cadmium tolerance and accumulation during seedling stage in rice (Oryza sativa L.). Euphytica 165:587–596

    Article  CAS  Google Scholar 

  • Yan YF, Letari P, Lee KJ, Kim MY, Lee SH, Lee BW (2013) Identification of quantitative trait loci for cadmium accumulation and distribution in rice (Oryza sativa). Genome 56:227–232

    Article  CAS  PubMed  Google Scholar 

  • Yang XE, Long XX, Ye HB, He ZL, Calvert DV, Stoffella PJ (2004) Cadmium tolerance and hyper accumulation in a new Zn hyper accumulating plant species (Sedum alfredii Hance). Plant Soil 259:181–189

    Article  CAS  Google Scholar 

  • Yang QW, Lan CY, Wang HB, Zhuang P, Shu WS (2006) Cadmium in soil–rice system and health risk associated with the use of untreated mining wastewater for irrigation in Lechang, China. Agric Water Manag 84:147–152

    Article  Google Scholar 

  • Ye Y, Li Z, Xing D (2013) Nitric oxide promotes MPK6-mediatedcaspase- 3-like activation in cadmium-induced Arabidopsis thaliana programmed cell death. Plant, Cell Environ 36:1–15

    Article  CAS  Google Scholar 

  • Yeh CM, Chien PS, Huang HJ (2007) Distinct signaling pathways for induction of MAP kinase activities by cadmium and copper in rice roots. J Exp Bot 58:659–671

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Wang J, Fang W, Yuan J, Yang Z (2006) Cadmium accumulation in different rice cultivars and screening for pollution-safe cultivars of rice. Sci Total Environ 370:302–309

    Article  CAS  PubMed  Google Scholar 

  • Yu LJ, Luo YF, Liao B, Xie LJ, Chen L, Xiao S, Li JT, Hu SN (2012) Comparative transcriptome analysis of transporters, phytohormone and lipid metabolism pathways in response to arsenic stress in rice (Oryza sativa). New Phytol 195:97–112

    Article  CAS  PubMed  Google Scholar 

  • Yuan L, Yang S, Liu B, Zhang M, Wu K (2012) Molecular characterization of a rice metal tolerance protein, OsMTP1. Plant Cell Rep 31:67–79

    Article  PubMed  CAS  Google Scholar 

  • Zdunić Z, Grljušić S, Ledenčan T, Duvnjak T, Simić D (2014) Quantitative trait loci mapping of metal concentrations in leaves of the maize IBM population. Hereditas 151:55–60

    Article  PubMed  Google Scholar 

  • Zhai L, Liao X, Chen T, Yan X, Xie H, Wu B, Wang L (2008) Regional assessment of cadmium pollution in agricultural lands and the potential health risk related to intensive mining activities: a case study in Chenzhou City, China. J Environ Sci (China) 20:696–703

    Article  CAS  Google Scholar 

  • Zhang J, Huang W (2000) Advances on physiological and ecological effects of cadmium on plants. Acta Ecol Sin 20:514–523

    Google Scholar 

  • Zhang G, Fukami M, Sekimoto H (2002) Influence of cadmium on mineral concentrations and yield components in wheat genotypes differing in Cd tolerance at seedling stage. Field Crop Res 77:93–98

    Article  Google Scholar 

  • Zhang LY, Li LQ, Pan GX (2009) Variation of Cd, Zn and Se contents of polished rice and the potential health risk for subsistence-diet farmers from typical areas of South China. Chin J Environ Sci 30:2792–2797

    Google Scholar 

  • Zhang X, Zhang GP, Guo L, Wang H, Zeng D, Dong G (2011) Identification of quantitative trait loci for Cd and Zn concentrations of brown rice grown in Cd-polluted soils. Euphytica 180:173–179

    Article  CAS  Google Scholar 

  • Zhao FJ, Hamon RE, Lombi E, McLaughlin MJ, McGrath SP (2002) Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. J Exp Bot 53:535–543

    Article  CAS  PubMed  Google Scholar 

  • Zhao C-R, Ikka T, Sawaki Y, Kobayashi Y, Suzuki Y, Hibino T, Sato S, Sakurai N, Shibata D, Koyama H (2009) Comparative transcriptomic characterization of aluminum, sodium chloride, cadmium and copper rhizotoxicities in Arabidopsis thaliana. BMC Plant Biol 9:32

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhao C, Qiao M, Yu Y, Xia G, Xiang F (2010) The effect of the heterologous expression of Phragmites australis gamma-glutamylcysteine synthetase on the Cd2+ accumulation of Agrostis palustris. Plant, Cell Environ 33:877–887

    Article  CAS  Google Scholar 

  • Zhao C, Xu J, Li Q, Li S, Wang P, Xiang F (2014) Cloning and characterization of a Phragmites australis phytochelatin synthase (PaPCS) and achieving Cd tolerance in tall fescue. PLoS ONE 9:e103771

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhen YH, Cheng YJ, Pan GX, Li LQ (2008) Cd, Zn and Se content of the polished rice samples from some Chinese open markets and their relevance to food safety. J Saf Environ 8:119–122

    CAS  Google Scholar 

  • Zhigang A, Cuijie L, Yuangang Z, Yejie D, Wachter A, Gromes R, Rausch T (2006) Expression of BjMT2, a metallothionein 2 from Brassica juncea, increases copper and cadmium tolerance in Escherichia coli and Arabidopsis thaliana, but inhibits root elongation in Arabidopsis thaliana seedlings. J Exp Bot 57:3575–3582

    Article  PubMed  CAS  Google Scholar 

  • Zhou J, Goldsbrough PB (1994) Functional homologs of fungal metallothionein genes from Arabidopsis. Plant Cell 6:875–884

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou ZS, Song JB, Yang ZM (2012) Genome-wide identification of Brassica napus microRNAs and their targets in response to cadmium. J Exp Bot 63:4597–4613

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu YL, Pilon-Smith EAH, Tarun AS, Weber SU, Jouanin L, Terry N (1999) Cadmium tolerance and accumulation in Indian mustard is enhanced by over expressing γ-glutamyl cysteine synthetase. Plant Physiol 121:1169–1177

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zimmerl S, Lafferty J, Buerstmayr H (2014) Assessing diversity in Triticum durum cultivars and breeding lines for high versus low cadmium content in seeds using the CAPS marker usw47. Plant Breed 133:712–717

    Article  CAS  Google Scholar 

Download references

Acknowledgments

UCJ acknowledges support from Visva Bharati University, Santiniketan, India and from the Indian Council of Agricultural Research (ICAR), New Delhi, India. AB acknowledges support from ICAR, New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Uday Chand Jha or Abhishek Bohra.

Ethics declarations

Conflicts of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, U.C., Bohra, A. Genomics enabled breeding approaches for improving cadmium stress tolerance in plants. Euphytica 208, 1–31 (2016). https://doi.org/10.1007/s10681-015-1580-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-015-1580-3

Keywords

Navigation