, Volume 208, Issue 1, pp 1–31 | Cite as

Genomics enabled breeding approaches for improving cadmium stress tolerance in plants

  • Uday Chand Jha
  • Abhishek Bohra


Heavy metal (HM) toxicity is a considerable challenge that the current agricultural production systems and human population face worldwide. Among the HMs with pronounced toxic effects, cadmium (Cd) potentially contaminates a range of vital agricultural resources including soil and water together with severely impacting crop performance. Besides, gradual accumulation of Cd in food chain poses a global threat to food safety and environmental sustainability. Plants are equipped with meticulously orchestrated physiological and molecular mechanisms to respond and acclimatize to Cd-challenged scenarios. However, limited understanding about the HM toxicity mechanism involving metal uptake/transport, associated candidate gene (s) or QTLs and signaling crosstalk has greatly constrained breeding capacities to improve plants for HM tolerance. In the context, quantifying genetic variation for Cd tolerance accompanied by appropriate breeding schemes allowing the most efficient utilization of the estimated variation should be essentially undertaken. Concurrently, efforts are needed to facilitate fast-track introgression of genomic segments harboring candidate gene(s)/QTL for Cd tolerance to high yielding yet Cd-susceptible backgrounds. Advances in plant molecular biology have introduced refined techniques and methods to pinpoint genetic factors describing plant Cd tolerance. Ancillary to conventional breeding and marker assisted selection methods are modern transgenic technologies that offer attractive means to precisely interrogate the relevant molecular networks and manipulate the key Cd-related genes in plants.


Heavy metal Cadmium Tolerance Genomics QTL Genetic engineering MAS 



UCJ acknowledges support from Visva Bharati University, Santiniketan, India and from the Indian Council of Agricultural Research (ICAR), New Delhi, India. AB acknowledges support from ICAR, New Delhi, India.

Compliance with ethical standards

Conflicts of interest

The authors declare that there is no conflict of interest.


  1. Abe T, Taguchi-Shiobara F, Kojima Y, Ebitani T, Kuramata M, Yamamoto T, Yano M, Ishikawa S (2011) Detection of a QTL for accumulating Cd in rice that enables efficient Cd phytoextraction from soil. Breed Sci 61:43–51CrossRefGoogle Scholar
  2. Abe T, Nonoue Y, Ono N, Omoteno M, Kuramata M, Fukuoka S, Yamamato T, Yano M, Ishikawa S (2013) Detection of QTLs to reduce cadmium content in rice grains using LAC23/Koshihikari chromosome segment substitution lines. Breed Sci 63:284–291PubMedCentralPubMedCrossRefGoogle Scholar
  3. Ahmad P, Ashraf M, Younis M, Hu X, Kumar A, Akram NA, Al-Qurainy F (2012) Role of transgenic plants in agriculture and biopharming. Biotechnol Adv 30:524–540PubMedCrossRefGoogle Scholar
  4. Ahsan N, Nakamura T, Komatsu S (2012) Differential responses of microsomal proteins and metabolites in two contrasting cadmium (Cd)-accumulating soybean cultivars under Cd stress. Amino Acids 42:317–327PubMedCrossRefGoogle Scholar
  5. Aina R, Labra M, Fumagalli P, Vannini C, Marsoni M, Cucchi U, Bracale M, Sgorbati S, Citterio S (2007) Thiol-peptide level and proteomic changes in response to cadmium toxicity in Oryza sativa L. roots. Environ Exp Bot 59:381–392CrossRefGoogle Scholar
  6. Alcantara E, Romero FJ, Canete M, De La Guardia MD (1994) Effects of heavy metals on both induction and function of root Fe(III) reductase in Fe-deficient cucumber (Cucumis sativus L.) plants. J Exp Bot 45:1893–1898CrossRefGoogle Scholar
  7. Alloway BJ (1995) Heavy metals in soils. Blackie Academic & Professional, London, pp 38–57Google Scholar
  8. Alvarez S, Berla BM, Sheffield J, Cahoon RE, Jez JM, Hicks LM (2009) Comprehensive analysis of the Brassica juncea root proteome in response to cadmium exposure by complementary proteomic approaches. Proteomics 9:2419–2431PubMedCrossRefGoogle Scholar
  9. Antosiewicz DM, Henning J (2004) Over expression of LTC1 in tobacco enhances the protective action of calcium against cadmium toxicity. Environ Pollut 129:237–245PubMedCrossRefGoogle Scholar
  10. Arao T, Ae N (2003) Genotypic variations in cadmium levels of rice grain. Soil Sci Plant Nutr 287:223–233Google Scholar
  11. Arao T, Ae N, Sugiyama M, Takahashi M (2003) Genotypic differences in cadmium uptake and distribution in soybeans. Plant Soil 251:247–253CrossRefGoogle Scholar
  12. Arao T, Ishikawa S, Murakami M, Abe K, Maejima Y, Makino T (2010) Heavy metal contamination of agricultural soil and countermeasures in Japan. Paddy Water Environ, 8:247–257CrossRefGoogle Scholar
  13. Arduini I, Ercoli L, Mariotti M, Masoni A (2006) Response of miscanthus to toxic cadmium applications during the period of maximum growth. Environ Exp Bot 55:29–40CrossRefGoogle Scholar
  14. Asami T (1984) Pollution of soils by cadmium. Changing metal cycles and human health Dahlem workshop reports. Life Sci Res Rep 28:95–111Google Scholar
  15. Ashraf M (2010) Inducing drought tolerance in plants: recent advances. Biotechnol Adv 28:169–183PubMedCrossRefGoogle Scholar
  16. Baker AJM, Whiting SN (2002) In search of the Holy Grail—a further ste in understanding metal hyperaccumulation? New Phytol 155:1–4CrossRefGoogle Scholar
  17. Balestrasse KB, Benavides MP, Gallego SM, Tomaro ML (2003) Effect on cadmium stress on nitrogen metabolism in nodules and roots of soybean plants. Funct Plant Biol 30:57–64CrossRefGoogle Scholar
  18. Balestrasse KB, Gallego SM, Tomaro ML (2004) Cadmium induced senescence in nodules of soybean (Glycine max. L) plants. Plant Soil 262:373–381CrossRefGoogle Scholar
  19. Bandara JMRS, Senevirathna DMAN, Dasanayake DMRSB, Herath V, Bandara JMRP, Abeysekara T, Rajapaksha KH (2007) Chronic renal failure among farm families in cascade irrigation systems in Sri Lanka associated with elevated dietary cadmium levels in rice and freshwater Wsh (Tilapia). Environ Geochem Health 30:465–478CrossRefGoogle Scholar
  20. Bandara JMRS, Wijewardena HVP, Liyanege J, Upul MA, Bandara JMUA (2010) Chronic renal failure in Sri Lanka caused by elevated dietary cadmium: Trojan horse of the green revolution. Toxicol Lett 198:33–39PubMedCrossRefGoogle Scholar
  21. Benavides MP, Gallego SM, Tomaro ML (2005) Cadmium toxicity in plant. Braz J Plant Physiol 17:21–35CrossRefGoogle Scholar
  22. Benitez ER, Hajika M, Yamada T, Takahashi K, Oki N, Yamada N, Nakamura T, Kanamaru K (2010) A major QTL controlling seed cadmium accumulation in soybean. Crop Sci 50:1728–1734CrossRefGoogle Scholar
  23. Benitez ER, Hazika M, Takahashi R (2012) Single-base substitution in P1b-ATpase gene is associated with a major QTL for seed cadmium concentration in soybean. J Hered. doi: 10.1093/jhered/esr123 PubMedGoogle Scholar
  24. Bennett LE, Burkhead JL, Hale KL, Terry N, Pilon M, Pilon-Smits EA (2003) Analysis of transgenic Indian mustard plants for phytoremediation of metal-contaminated mine tailings. J Environ Qual 32:432–440PubMedCrossRefGoogle Scholar
  25. Bernard C, Roosens N, Czernic P, LebrunM Verbruggen N (2004) A novel CPx-ATPase from the cadmium hyperaccumulator Thlaspi caerulescens. FEBS Lett 569:140–148PubMedCrossRefGoogle Scholar
  26. Bert V, Bonnin I, Saumitou-Laprade P, de Laguerie P, Petit D (2002) Do Arabidopsis halleri from nonmetallicolous populations accumulate zinc and cadmium more effectively than those from metallicolous populations? New Phytol 155:47–57CrossRefGoogle Scholar
  27. Blinda A, Koch B, Ramanjulu S, Dietz KJ (1997) De novo synthesis and accumulation of apoplastic proteins in leaves of heavy metal exposed barley seedlings. Plant, Cell Environ 20:969–981CrossRefGoogle Scholar
  28. Briat JF, Lebrun M (1999) Plant responses to metal toxicity. Plant Biol Pathol 322:43–54Google Scholar
  29. Brunetti P, Zanella L, Proia A, Paolis AD, Falasca G, Altamura MM, di Toppi LS, Costantino P, Cardarelli M (2011) Cadmium tolerance and phytochelatin content of Arabidopsis seedlings over-expressing the phytochelatin synthase gene AtPCS1. J Exp Bot 62:5509–5519PubMedCentralPubMedCrossRefGoogle Scholar
  30. Cailliatte R, Lapeyre B, Briat J-F, Mari S, Curie C (2009) The NRAMP6 metal transporter contributes to cadmium toxicity. Biochem J 422:217–228PubMedCrossRefGoogle Scholar
  31. Cakmak I, Welch RM, Hart J, Norvell WA, Ozturk L, Kochain LV (2000) Uptake and retranslocation of leaf applied cadmium (109Cd) in diploid, tetraploid and hexaploids wheats. J Exp Bot 51:221–226PubMedCrossRefGoogle Scholar
  32. Cao F, Wang R, Cheng W, Zeng F, Ahmed IM, Hu X, Zhang G, Wu F (2014a) Genotypic and environmental variation in cadmium, chromium, lead and copper in rice and approaches for reducing the accumulation. Sci Total Environ 496:275–281PubMedCrossRefGoogle Scholar
  33. Cao F, Chen F, Sun H, Zhang G, Chen ZH, Wu F (2014b) Genome-wide transcriptome and functional analysis of two contrasting genotypes reveals key genes for cadmium tolerance in barley. BMC Genom 15:611CrossRefGoogle Scholar
  34. Cao F, Cai Y, Liu L, Zhang M, He X, Zhang G, Wu F (2015) Differences in photosynthesis, yield and grain cadmium accumulation as affected by exogenous cadmium and glutathione in the two rice genotypes. Plant Growth Regul 75:715–723CrossRefGoogle Scholar
  35. Cattani I, Romani M, Boccelli R (2008) Effect of cultivation practices on cadmium concentration in rice grain. Agron Sustain Dev 28:265–271CrossRefGoogle Scholar
  36. Chan DY, Hale BA (2004) Differential accumulation of Cd in durum wheat cultivars: uptake and re translocation as sources of variation. J Exp Bot 55:2571–2579PubMedCrossRefGoogle Scholar
  37. Chao DY, Silva A, Baxter I, Huang YS, Nordborg M, Danku J, Lahner B, Yakubova E, Salt DE (2012) Genome wide association studies identify heavy metal ATPase3 as the primary determinant of natural variation in leaf cadmium in Arabidopsis thaliana. PLoS Genet 2012:8Google Scholar
  38. Chen F, Dong J, Wang F, Wu F, Zhang G, Li G, Chen Z, Chen J, Wei K (2007) Identification of barley genotypes with low grain Cd accumulation and its interaction with four microelements. Chemosphere 67:2082–2088PubMedCrossRefGoogle Scholar
  39. Chen Y, Li TQ, Han X, Ding Z, Yang X, Jin Y (2012) Cadmium accumulation in different Pakchoi cultivars and screening for pollution-safe cultivars. J Zhejiang Univ Sci B (Biomed Biotechnol) 13:494–502CrossRefGoogle Scholar
  40. Chen Y, Xu W, Shen H, Yan H, Xu W, He Z, Ma M (2013) Engineering arsenic tolerance and hyper accumulation in plants for phytoremediation by a PvACR3 transgenic approach. Environ Sci Technol 47:9355–9362PubMedCrossRefGoogle Scholar
  41. Cheng F, Zhao N, Xu H, Li Y, Zhang W, Zhu Z, Chen M (2006) Cadmium and lead contamination in japonica rice grains and its variation among the different locations in southeast China. Sci Total Environ 359:156–166PubMedCrossRefGoogle Scholar
  42. Chiyoda N, Kobayashi E, Okubo Y, Suwazono Y, Kido T, Nogawa K (2003) Allowable level of lifetime cadmium intake calculated from the individuals in the Jinzu river basin of Japan. Biol Trace Elem Res 96:1–20CrossRefGoogle Scholar
  43. Chmielowska-Bąk J, Deckert J (2012) A common response to common danger? Comparison of animal and plant signaling pathways involved in cadmium sensing. J Cell Commun Signal 6:191–204PubMedCentralPubMedCrossRefGoogle Scholar
  44. Chmielowska-Bak J, LefèvreI Lutts S, Deckert J (2013) Short term signaling responses in roots of young soybean seedlings exposed to cadmium stress. J Plant Physiol 170:1585–1594PubMedCrossRefGoogle Scholar
  45. Chmielowska-Bak J, Gzyl J, Rucinska-Sobkowiak R, Arasimowicz-Jelonek M, Deckert J (2014) The new insights into cadmium sensing. Front Plant Sci 5:1–13Google Scholar
  46. Ci D, Jiang D, Li S, Wollenweber B, Dai T, Cao W (2012) Identification of quantitative trait loci for cadmium tolerance and accumulation in wheat. Acta Physiol Plant 34:191–202CrossRefGoogle Scholar
  47. Clarke JM, Leisle D, DePauw RM, Thiessen LL (1997) Registration of five pairs of durum wheat genetic stocks near-isogenic for cadmium concentration. Crop Sci 37:297CrossRefGoogle Scholar
  48. Clarke JM, Norvell WA, Clarke FR, Buckley WT (2002) Concentration of cadmium and other elements in the grain of near-isogenic durum lines. Can J Plant Sci 82:27–33CrossRefGoogle Scholar
  49. Clarke JM, McCaig TN, DePauw RM, Knox RE, Clarke FR, Fernandez MR, Ames NP (2005) Strongfield durum wheat. Can J Plant Sci 85:651–654CrossRefGoogle Scholar
  50. Clarke JM, Knox RE, DePauw RM, Clarke FR, McCaig TN, Fernandez MR, Singh AK (2009a) Eurostar durum wheat. Can J Plant Sci 89:317–320CrossRefGoogle Scholar
  51. Clarke JM, Knox RE, DePauw RM, Clarke FR, Fernandez MR, McCaig TN, Singh AK (2009b) Brigade durum wheat. Can J Plant Sci 89:505–509CrossRefGoogle Scholar
  52. Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212:475–486PubMedCrossRefGoogle Scholar
  53. Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719PubMedCrossRefGoogle Scholar
  54. Clemens S, Kim EJ, Neumann D, Schroeder JI (1999) Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. EMBO J 18:3325–3333PubMedCentralPubMedCrossRefGoogle Scholar
  55. Clemens S, Aarts MGM, Thomine S, Verbruggen N (2013) Plant science: the key to preventing slow cadmium poisoning. Trends Plant Sci 18:92–99PubMedCrossRefGoogle Scholar
  56. Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–832PubMedCentralPubMedCrossRefGoogle Scholar
  57. Cobbett C, Goldsbrough P (2002) PHYTOCHELATINS AND METALLOTHIONEINS: roles inheavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182PubMedCrossRefGoogle Scholar
  58. Codex (2006) Report of the 29th session of the Codex Alimentarius Commission; ALINORM 05/28/41. Codex Alimentarius Commission, RomeGoogle Scholar
  59. Codex Alimentarius Commission (2001) Report of the 33rd Session of the Codex Committee on Food Additives and Contaminants. The Hague, The Netherlands: Joint FAO/WHO Food Standards Programme. ALINORM 01/12A. Appendix XV, p. 285. Scholar
  60. CODEX STAN 193-1995 (2009) Codex general standard for contaminants and toxins in foods and feed [WWW document]. Accessed Dec 2010
  61. Commission of the European Communities (2008) Amending Regulation (EC) No 1881/2006 setting levels for certain contaminants in foodstuffs. Official J Eur Union L 173/8Google Scholar
  62. Courbot M, Willems G, Motte P, Arvidsson S, Roosens N, Saumitou-Laprade P, Verbruggen N (2007) A major quantitative trait Locus for cadmium tolerance in Arabidopsis halleri colocalizes with HMA4, a gene encoding a heavy metal ATPase. Plant Physiol 144:1052–1065PubMedCentralPubMedCrossRefGoogle Scholar
  63. DalCorso G, Farinati S, Maistri S, Furini A (2008) How plants cope with cadmium: staking all on metabolism and gene expression. J Integr Plant Biol 10:1268–1280CrossRefGoogle Scholar
  64. DalCorso G, Farinati S, Furini A (2010) Regulatory networks of cadmium stress in plants. Plant Signal Behav 5:663–667PubMedCentralPubMedCrossRefGoogle Scholar
  65. Daniell H, Khan MS, Allison L (2002) Milestones in chloroplast genetic engineering: an environmentally friendly era in biotechnology. Trends Plant Sci 7:84–91PubMedCentralPubMedCrossRefGoogle Scholar
  66. Deniau AX, Pieper B, Bookum WMT, Lindhout P, Aarts MGM, Schat H (2006) QTL analysis of cadmium and zinc accumulation in the heavy metal hyper accumulator Thlaspi caerulescens. Theor Appl Genet 113:907–920PubMedCrossRefGoogle Scholar
  67. Ding YF, Zhu C (2009) The role of microRNAs in copper and cadmium homeostasis. Biochem Biophys Res Commun 386:6–10PubMedCrossRefGoogle Scholar
  68. Ding YF, Chen Z, Zhu C (2011) Microarray-based analysis of cadmium-responsive microRNAs in rice (Oryza sativa). J Exp Bot 60:3563–3573CrossRefGoogle Scholar
  69. Dixit P, Mukherjee PK, Ramachandran V, Eapen S (2011) Glutathione transferase from Trichoderma virens enhances cadmium tolerance without enhancing its accumulation in transgenic Nicotiana tabacum. PLoS ONE 6:e16360PubMedCentralPubMedCrossRefGoogle Scholar
  70. Doucleff M, Terry N (2002) Pumping out the arsenic. Nat Biotechnol 20:1094–1095PubMedCrossRefGoogle Scholar
  71. Dunbar KR, McLaughlin MJ, Reid RJ (2003) The uptake and partitioning of cadmium in two cultivars of potato (Solanum tuberosum L.). J Exp Bot 54:349–354PubMedCrossRefGoogle Scholar
  72. Durand TC, Sergeant K, Planchon S, Carpin S, Label P, Morabito D, Hausman JF, Renaut J (2010) Acute metal stress in Populus tremula × P. alba (717-1B4 genotype): leaf and cambial proteome changes induced by cadmium 2+. Proteomics 10:349–368PubMedCrossRefGoogle Scholar
  73. Ebana K, Kojima Y, Fukuoka S, Nagamine T, Kawase M (2008) Development of mini core collection of Japanese rice landrace. Breed Sci 58:281–291CrossRefGoogle Scholar
  74. EFSA (European Food Safety Authority) (2009) Scientific Opinion of the Panel on Contaminants in the Food Chain on a request from the European Commission on cadmium in food. EFSA J 980:1–139Google Scholar
  75. Egan SK, Bolger PM, Carrington CD (2007) Update of US FDA’s total diet study food list and diets. J Expo Sci Environ Epidemiol 17:573–582PubMedCrossRefGoogle Scholar
  76. Erickson DL, Fenster CB, Stenoien HK, Price D (2004) Quantitative trait locus analyses and the study of evolutionary process. Mol Ecol 13:2505–2522PubMedCrossRefGoogle Scholar
  77. Fang X, Zhao Y, Ma Q, Huang Y, Wang P, Zhang J, Nian H, Yang C (2013) Identification and comparative analysis of cadmium tolerance-associated miRNAs and their targets in two soybean genotypes. PLoS ONE 8:e81471PubMedCentralPubMedCrossRefGoogle Scholar
  78. Fang Y, Sun X, Yang W, Ma N, Xin Z, Fu J, Liu X, Liu M, Mariga AM, Zhu X, Hu Q (2014) Concentrations and health risks of lead, cadmium, arsenic, and mercury in rice and edible mushrooms in China. Food Chem 147:147–151PubMedCrossRefGoogle Scholar
  79. Farinati S, DalCorso G, Varotto S, Furini A (2010) The Brassica juncea BjCdR15, an ortholog of Arabidopsis TGA3, is a regulator of cadmium uptake, transport and accumulation in shoots and confers cadmium tolerance in transgenic plants. New Phytol 185:964–978PubMedCrossRefGoogle Scholar
  80. Fodor A, Szabo-Nagy A, Erdei L (1995) The effects of cadmium on the fluidity and H+-ATPase activity of plasma membrane from sunflower and wheat roots. J Plant Physiol 14:787–792Google Scholar
  81. Foy CD, Chaney RL, Whoite MC (1978) The physiology of metal toxicity in plants. Annu Rev Plant Physiol 29:511–566CrossRefGoogle Scholar
  82. Fu J, Zhou Q, Liu J, Liu W, Wang T, Zhang Q, Jiang G (2008) High levels of heavy metals in rice (Oryza sativa L.) from a typical E-waste recycling area in southeast China and its potential risk to human health. Chemosphere 71:1269–1275PubMedCrossRefGoogle Scholar
  83. Fujimaki S, Suzui N, Ishioka NS, Kawachi N, Ito S, Chino M, Nakamura S (2010) Tracing cadmium from culture to spikelet: noninvasive imaging and quantitative characterization of absorption, transport, and accumulation of cadmium in an intact rice plant. Plant Physiol 152:1796–1806PubMedCentralPubMedCrossRefGoogle Scholar
  84. Fusco N, Micheletto L, Dal Corso G, Borgato L, Furini A (2005) Identification of cadmium-regulated genes by cDNA-AFLP in the heavy metal accumulator Brassica juncea L. J Exp Bot 56:3017–3027PubMedCrossRefGoogle Scholar
  85. Gaillard S, Jacquet H, Vavasseur A, Leonhardt N, Forestier C (2008) AtMRP6/AtABCC6, an ATP-Binding Cassette transporter gene expressed during early steps of seedling development and up-regulated by cadmium in Arabidopsis thaliana. BMC Plant Biol 8:22PubMedCentralPubMedCrossRefGoogle Scholar
  86. Gallego SM, Pena LB, Barcia RA, Azpilicueta CE, Iannone MF, Rosales EP, Zawoznik M, Groppa MD, Benavides MP (2012) Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environ Exp Bot 83:33–46CrossRefGoogle Scholar
  87. Gao J, Sun L, Yang X, Liu JX (2013) Transcriptomic analysis of cadmium stress response in the heavy metal hyperaccumulator Sedum alfredii Hance. PLoS ONE 8:e64643PubMedCentralPubMedCrossRefGoogle Scholar
  88. Garnier L, Simon-Plas F, Thuleau P, Agnel JP, Blein JP, Ranjeva R, Montillet JL (2006) Cadmium affects tobacco cells by a series of three waves of reactive oxygen species that contribute to cytotoxicity. Plant, Cell Environ 29:1956–1969CrossRefGoogle Scholar
  89. Gasic K, Korban SS (2007a) Transgenic Indian mustard (Brassica juncea) plants expressing an Arabidopsis phytochelatin synthase (AtPCS1) exhibit enhanced As and Cd tolerance. Plant Mol Biol 64:361–369PubMedCrossRefGoogle Scholar
  90. Gasic K, Korban SS (2007b) Expression of Arabidopsis phytochelatin synthase in Indian mustard (Brassica juncea) plants enhances tolerance for Cd and Zn. Planta 225:1277–1285PubMedCrossRefGoogle Scholar
  91. Gaur R, Bhatia S, Gupta M (2014) Generation of expressed sequence tags under cadmium stress for gene discovery and development of molecular markers in chickpea. Protoplasma 251:955–972PubMedCrossRefGoogle Scholar
  92. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930PubMedCrossRefGoogle Scholar
  93. Gill SS, Tuteja N (2011) Cadmium stress tolerance in crop plants probing the role of sulfur. Plant Signal Behav 6:215–222PubMedCrossRefGoogle Scholar
  94. Gill SS, Khan NA, Tuteja N (2012) Cadmium at high dose perturbs growth, photosynthesis and nitrogen metabolism while at low dose it up regulates sulfur assimilation and antioxidant machinery in garden cress (Lepidium sativum L.). Plant Sci 182:112–120PubMedCrossRefGoogle Scholar
  95. Gill S, Hasanuzzaman M, Nahar K, Macovei A, Tuteja N (2013) Importance of nitric oxide in cadmium stress tolerance in crop plants. Plant Physiol Biochem 63:254–261PubMedCrossRefGoogle Scholar
  96. Gong WQ, Li LQ, Pan GX (2007) Cd uptake and accumulation in grains by hybrid rice in two paddy soils: interactive effect of soil type and cultivars. Huan Jing Ke Xue 27:1647–1653Google Scholar
  97. Grant CA, Clarke JM, Duguid S, Chaney RL (2008) Selection and breeding of plant cultivars to minimize cadmium accumulation. Sci Total Environ 390:301–310PubMedCrossRefGoogle Scholar
  98. Greger M, Löfstedt M (2004) Comparison of uptake and distribution of cadmium in different cultivars of bread and durum wheat. Crop Sci 44:501–507CrossRefGoogle Scholar
  99. Greger M, Johansson M, Stihi D, Humza K (1994) Foliar uptake of Cd by pea (Pisum sativum) and sugar beet (Beta vulgaris). Physiol Plant 88:563–570CrossRefGoogle Scholar
  100. Grill E, Loffler S, Winnacke EL, Zenk MH (1987) Phytochelatins, a class of heavy-metal-binding peptides from plants, are functionally analogous to metallothioneins. Pro Nat Acad Sci USA 84:439–443CrossRefGoogle Scholar
  101. Grill E, Loffler S, Winnacke EL, Zenk MH (1989) Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific γ-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc Natl Acad Sci USA 86:6838–6842PubMedCentralPubMedCrossRefGoogle Scholar
  102. Guan C, Jin C, Ji J, Wang G, Li X (2015a) LcBiP, a endoplasmic reticulum chaperone binding protein gene from Lycium chinense, confers cadmium tolerance in transgenic tobacco. Biotechnol Prog. doi: 10.1002/btpr.2046 PubMedGoogle Scholar
  103. Guan C, Ji J, Jia C, Guan W, Li X, Jin C, Wang G (2015b) A GSHS-like gene from Lycium chinense maybe regulated by cadmium-induced endogenous salicylic acid and over expression of this gene enhances tolerance to cadmium stress in Arabidopsis. Plant Cell Rep 34:871–884PubMedCrossRefGoogle Scholar
  104. Guan C, Ji J, Wu D, Li X, Jin C, Guan W, Wang G (2015c) The glutathione synthesis may be regulated by cadmium-induced endogenous ethylene in Lycium chinense, and overexpression of an ethylene responsive transcription factor gene enhances tolerance to cadmium stress in tobacco. Mol Breed 35:123CrossRefGoogle Scholar
  105. Guo JB, Dai XJ, Xu WZ et al (2008) Overexpressing GSH1 and AsPCS1 simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Chemosphere 72:1020–1026PubMedCrossRefGoogle Scholar
  106. Guo-ming S, Qi-zhen D, Jiang-xin W (2012) Involvement of plasma membrane Ca2+/H+ antiporter in Cd2+ tolerance. Rice Sci 19:161–165CrossRefGoogle Scholar
  107. Ha S-B, Smith AP, Howden R, Dietrich WM, Bugg S, O'Connell MJ, Goldsbrough PB, Cobbett CS (1999) Phytochelatin synthase genes from Arabidopsis and the yeast, Schizosaccharomyces pombe. Plant Cell 11:1153–1164PubMedCentralPubMedCrossRefGoogle Scholar
  108. Halimaa P, Blande D, Aarts MGM, Tuomainen M, Tervahauta A, Karenlampi S (2014) Comparative transcriptome analysis of the metal hyper accumulator Noccaea caerulescens. Front Plant Sci 5:1–7CrossRefGoogle Scholar
  109. Hall JL (2002) Cellular mechanism for heavy metal detoxification and tolerance. J Exp Bot 53:1–11PubMedCrossRefGoogle Scholar
  110. Han B, Yang Z, Xie Y, Nie L, Cui J, Shen W (2013) Arabidopsis HY1 confers cadmium tolerance by decreasing nitric oxide production and improving iron homeostasis. Mol Plant. doi: 10.1093/mp/sst122 Google Scholar
  111. Haque MD, Sasaki C, Matsuyama N, Annaka T, Sasaki K (2014) Effect of groundwater level on cadmium uptake and yield of soybean from cadmium polluted soils. Int J Environ Rural Dev 1–15:107–113Google Scholar
  112. Harada E, Cho YE, Tsuchisaka A, Obata H, Sano H (2001) Transgenic tobacco plants expressing a rice cysteine synthase gene are tolerant to toxic levels of cadmium. J Plant Physiol 158:655–661CrossRefGoogle Scholar
  113. Harris NS, Taylor GJ (2001) Remobilization of cadmium in maturing shoots of near isogenic lines of durum wheat that differ in grain cadmium accumulation. J Exp Bot 52:1473–1481PubMedCrossRefGoogle Scholar
  114. Harris NS, Taylor GJ (2004) Cadmium uptake and translocation in seedlings of near isogenic lines of durum wheat that differ in grain cadmium accumulation. BMC Plant Biol 4:4PubMedCentralPubMedCrossRefGoogle Scholar
  115. Harris NS, Taylor GJ (2013) Cadmium uptake and partitioning in durum wheat during grain filling. BMC Plant Biol 13:103PubMedCentralPubMedCrossRefGoogle Scholar
  116. Hart JJ, Welch RM, Norvell WA, Kochian LV (2006) Characterization of cadmium uptake, translocation and storage in near-isogenic lines of durum wheat that differ in grain cadmium concentration. New Phytol 172:261–271PubMedCrossRefGoogle Scholar
  117. Hasanuzzaman M, Fujita M (2012) Heavy metals in the environment: current status, toxic effects on plants and possible phytoremediation. In: Anjum NA, Pereira MA, Ahmad I, Duarte AC, Umar S, Khan NA (eds) Phytotechnologies: remediation of environmental contaminants. Taylor and Francis/CRC Press, Boca RatonGoogle Scholar
  118. Hasanuzzaman M, Hossain MA, Fujita M (2012) Exogenous selenium pretreatment protects rapeseed seedlings from cadmium-induced oxidative stress by upregulating the antioxidant defense and methylglyoxal detoxification systems. Biol Trace Elem Res 149:248–261PubMedCrossRefGoogle Scholar
  119. Hasanuzzaman M, Nahar K, Fujita M (2013) Adverse effects of cadmium on plants and possible mitigation of Cd-induced damages. In: Hasanuzzaman M, Fujita M (eds) Cadmium: characteristics, sources of exposure, health and environmental effects. Nova Science Publishers Inc, Hauppauge, pp 1–48Google Scholar
  120. He J, Zhu C, Ren Y, Yan Y, Jiang D (2006) Genotypic variation in grain cadmium concentration of lowland rice. J Plant Nutr Soil Sci 169:711–716CrossRefGoogle Scholar
  121. He J, Li H, Luo J, Ma C, Li S, Qu L, Gai Y, Jiang X, Janz D, Polle A, Tyree M, Luo ZB (2013) A transcriptomic network underlies microstructural and physiological responses to cadmium in Populus × canescens. Plant Physiol 162:424–439PubMedCentralPubMedCrossRefGoogle Scholar
  122. He J, Zhao X, Laroche A, Lu Z-X, Liu H, Li Z (2014) Genotyping by sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Front Plant Sci 5:484PubMedCentralPubMedCrossRefGoogle Scholar
  123. Herbette S, Taconnat L, Hugouvieux V, Piette L, Magniette ML, Cuine S, Auroy P, Richaud P, Forestier C, Bourguignon J, Renou JP, Vavasseur A, Leonhardt N (2006) Genome-wide transcriptome profiling of the early cadmium response of Arabidopsis roots and shoots. Biochimie 88:1751–1765PubMedCrossRefGoogle Scholar
  124. Honda R, Swaddiwudhipong W, Nishijo M, Mahasakpan P, Teeyakasem W, Ruangyuttikarn W, Satarug S, Padungtod C, Nakagawa H (2010) Cadmium induced renal dysfunction among residents of rice farming area downstream from a zinc-mineralized belt in Thailand. Toxicol Lett 198:26–32PubMedCrossRefGoogle Scholar
  125. Hossain MA, Piyatida P, da Silva JAT, Fujita M (2012a) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot 2012:1–37CrossRefGoogle Scholar
  126. Hossain Z, Hajika M, Komatsu S (2012b) Comparative proteome analysis of high and low cadmium accumulating soybeans under cadmium stress. Amino Acids 43:2393–2416PubMedCrossRefGoogle Scholar
  127. Hou L, Shi W, Shen H (2011) Cadmium uptake, translocation, and tolerance in AHA1OX Arabidopsis thaliana. Biol Trace Elem Res 139:228–240PubMedCrossRefGoogle Scholar
  128. Hradilová J, Rehulka P, Rehulková H, Vrbová M, Griga M, Brzobohatý B (2010) Comparative analysis of proteomic changes in contrasting flax cultivars upon cadmium exposure. Electrophoresis 31:421–431PubMedCrossRefGoogle Scholar
  129. Huang DF, Xi LL, Yang LN, Wang ZQ, Yang JC (2008) Comparison of agronomic and physiological traits of rice genotypes differing in cadmium-tolerance. Acta Agron Sin 34:809–817Google Scholar
  130. Huang SQ, Xiang AL, Che LL, Chen S, Li H, Song JB, Yang ZM (2010) A set of miRNAs from Brassica napus in response to sulphate deficiency and cadmium stress. Plant Biotechnol J 8:887–899PubMedCrossRefGoogle Scholar
  131. Ibaraki T, Kuroyanagi N, Murakami M (2009) Practical phytoextraction in cadmium-polluted paddy fields using a high cadmium accumulating rice plant cultured by early drainage of irrigation water. Soil Sci Plant Nutr 55:421–427CrossRefGoogle Scholar
  132. Induri BR, Ellis DR, Slavov GT, Yin T, Zhang X, Muchero W, Tuskan GA, DiFazio SP (2012) Identification of quantitative trait loci and candidate genes for cadmium tolerance in Populus. Tree Physiol 32:626–638PubMedCrossRefGoogle Scholar
  133. Ishihara T, Kobayashi E, Okubo Y, Suwazono Y, Kido T, Nishijyo M, Nakagawa H, Nogawa K (2001) Association between cadmium concentration in rice and mortality in Jinzu river basin, Japan. Toxicology 163:23–28PubMedCrossRefGoogle Scholar
  134. Ishikawa S, Ae N, Yano M (2005) Chromosomal regions with quantitative trait loci controlling cadmium concentration in brown rice (Oryza sativa). New Phytol 168:345–350PubMedCrossRefGoogle Scholar
  135. Ishikawa S, Abe T, Kuramata M, Yamaguchi M, Ando T, Yamamoto T, Yano M (2010) A major quantitative trait locus for increasing cadmium-specific concentration in rice grain is located on the short arm of chromosome 7. J Exp Bot 61:923–934PubMedCentralPubMedCrossRefGoogle Scholar
  136. Ishikawa S, Suzui N, Ito-Tanabata S, Ishii S, Igura M, Abe T, Kuramata M, Kawachi N, Fujimaki S (2011) Real-time imaging and analysis of differences in cadmium dynamics in rice cultivars (Oryza sativa) using positron-emitting 107Cd tracer. BMC Plant Biol 11:172PubMedCentralPubMedCrossRefGoogle Scholar
  137. Ishikawa S, Ishimaru Y, Igura M, Kuramata M, Abe T, Senoura T, Hase Y, Arao T, Nishizawa NK, Nakanishi H (2012) Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice. Proc Natl Acad Sci USA 109:19166–19171PubMedCentralPubMedCrossRefGoogle Scholar
  138. Ishimaru Y, Takahashi R, Bashir K, Shimo H, Senoura T et al (2012) Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport. Sci Rep 2:286PubMedCentralPubMedCrossRefGoogle Scholar
  139. Izuno T, Sugita M, Arita S, Otahara Y, Nasu I, Tsuchiya K, Hayashi Y (2000) Validity of cadmium concentration in rice as the ‘‘dose’’ of the dose/response relationship between cadmium intake and renal dysfunction. Environ Res 84:275–281PubMedCrossRefGoogle Scholar
  140. Jarup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182PubMedCrossRefGoogle Scholar
  141. Jegadeesan S, Yu K, Povsa V, Gawalko E, Morrison MJ, Shi C, Cober E (2010) Mapping and validation of simple sequence repeat markers linked to a major gene controlling seed cadmium accumulation in soybean [Glycine max (L.) Merr]. Theor Appl Genet 121:283–294PubMedCrossRefGoogle Scholar
  142. Jonak C, Nakagami H, Hirt H (2004) Heavy metal stress. Activation of distinct mitogen-activated protein kinase pathways by copper and cadmium. Plant Physiol 136:3276–3283PubMedCentralPubMedCrossRefGoogle Scholar
  143. Jung MC, Thornton I (1997) Environmental contamination and seasonal variation of metals in soils, plants and waters in the paddy fields around a Pb-Zn mine in Korea. Sci Total Environ 198:105–112PubMedCrossRefGoogle Scholar
  144. Kashiwagi T, Shindoh K, Hirotsu N, Ishimaru K (2009) Evidence for separate translocation pathways in determining cadmium accumulation in grain and aerial plant parts in rice. BMC Plant Biol 21(9):8CrossRefGoogle Scholar
  145. Khan SI, Ahmed AKM, Yunus M, Rahman M, Hore SK, Vahter M, Wahed MA (2010) Arsenic and cadmium in food-chain in Bangladesh—an exploratory study. J Health Popul Nutr 28:578–584PubMedCentralPubMedGoogle Scholar
  146. Kieffer P, Dommes J, Hoffmann L, Hausman JF, Renaut J (2008) Quantitative changes in protein expression of cadmium-exposed poplar plants. Proteomics 8:2514–2530PubMedCrossRefGoogle Scholar
  147. Kieffer P, Schröder P, Dommes J, Hoffmann L, Renaut J, Hausman JF (2009) Proteomic and enzymatic response of poplar to cadmium stress. J Proteomics 72:379–396PubMedCrossRefGoogle Scholar
  148. Kikuchi T, Okazaki M, Toyota K, Motobayashi T, Kato M (2007) The input–output balance of cadmium in a paddy field of Tokyo. Chemosphere 67:920–927PubMedCrossRefGoogle Scholar
  149. Kim DY, Bovet L, Maeshima M, Martinoia E, Lee YS (2007) The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant J 50:207–218PubMedCrossRefGoogle Scholar
  150. Knox RE, Pozniak CJ, Clarke FR, Clarke JM, Houshmand S, Singh AK (2009) Chromosomal location of the cadmium uptake gene (Cdu1) in durum wheat. Genome 52:741–747PubMedCrossRefGoogle Scholar
  151. Kobayashi E, Suwazono Y, Dochi M, Honda R, Kido T (2008) Influence of consumption of cadmium-polluted Rice or Jinzu River water on occurrence of renal tubular dysfunction and/or Itai-itai disease. Biol Trace Elem Res 127:257–268PubMedCrossRefGoogle Scholar
  152. Kojima Y, Ebana K, Fukuoka S, Nagamine T, Kawase M (2005) Development of and RFLP-based rice diversity research set of germplasm. Breed Sci 55:431–440CrossRefGoogle Scholar
  153. Kong X (2014) China must protect high-quality arable land. Nature 506:7PubMedCrossRefGoogle Scholar
  154. Koren’kov V, Park S, Cheng NH, Sreevidya C, Lachmansingh J, Morris J, Hirschi K, Wagner GJ (2007) Enhanced Cd2+-selective root-tonoplast-transport in tobaccos expressing Arabidopsis cation exchangers. Planta 225:403–411PubMedCrossRefGoogle Scholar
  155. Korenkov V, Hirschi K, Crutchfield JD, Wagner GJ (2007) Enhancing tonoplast Cd/H antiport activity increases Cd, Zn, and Mn tolerance, and impacts root/shoot Cd partitioning in Nicotiana tabacum L. Planta 226:1379–1387PubMedCrossRefGoogle Scholar
  156. Korenkov V, King B, Hirschi K, Wagner GJ (2009) Root-selective expression of AtCAX4 and AtCAX2 results in reduced lamina cadmium in field-grown Nicotiana tabacum L. Plant Biotechnol J 7:219–226PubMedCrossRefGoogle Scholar
  157. Kovalchuk I, Titov V, Hohn B, Kovalchuk O (2005) Transcriptome profiling reveals similarities and differences in plant responses to cadmium and lead. Mutat Res 570:149–161PubMedCrossRefGoogle Scholar
  158. Krämer U (2005) Phytoremediation: novel approaches to cleaning up polluted soils. Curr Opin Biotechnol 16:133–141PubMedCrossRefGoogle Scholar
  159. Krämer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61:517–534PubMedCrossRefGoogle Scholar
  160. Kubo K, Watanabe Y, Oyanagi A, Kaneko S, Chono M, Matsunka H, Seki M, Fujita M (2008) Cadmium concentration in grains of Japanese wheat cultivars: genotypic difference and relationship with agronomic characteristic. Plant Prod Sci 11:243–249CrossRefGoogle Scholar
  161. Kühnlenz T, Schmidt H, Uraguchi S, Clemens S (2014) Arabidopsis thaliana phytochelatin synthase 2 is constitutively active in vivo and can rescue the growth defect of the PCS1-deficient cad1-3 mutant on Cd-contaminated soil. J Exp Bot. doi: 10.1093/jxb/eru195 PubMedCentralPubMedGoogle Scholar
  162. Kunihiro S, Saito T, Matsuda T, Inoue M, Kuramata M, Taguchi-Shiobara F, Youssefian S, Berberich T, Kusano T (2013) Rice DEP1, encoding a highly cysteine-rich G protein γ subunit, confers cadmium tolerance on yeast cells and plants. J Exp Bot 64:4517–4527PubMedCentralPubMedCrossRefGoogle Scholar
  163. Lam HM, Remais J, Fung MC, Liqing Xu, Sun SSM (2013) Food supply and food safety issues in China. Lancet 381(9882):2044–2053PubMedCrossRefGoogle Scholar
  164. Lasat MM (2002) Phytoextraction of toxic metals: a review of biological mechanisms. J Environ Qual 31:109–120PubMedCrossRefGoogle Scholar
  165. LeBlanc MS, Lima A, Montello P, Kim T, Meagher RB, Merkle S (2011) Enhanced arsenic tolerance of transgenic eastern cottonwood plants expressing gamma-glutamylcysteine synthetase. Int J Phytoremediation  13:657–673PubMedCrossRefGoogle Scholar
  166. Lee BR, Hwang S (2015a) Overexpression of NtUBQ2 encoding Ub-extension protein enhances cadmium tolerance by activating 20S and 26S proteasome in tobacco (Nicotiana tabacum). Acta Physiol Plant 37:22CrossRefGoogle Scholar
  167. Lee BR, Hwang S (2015b) Over-expression of NtHb1 encoding a non-symbiotic class 1 hemoglobin of tobacco enhances a tolerance to cadmium by decreasing NO (nitric oxide) and Cd levels in Nicotiana tabacum. Environ Exp Bot 113:18–27CrossRefGoogle Scholar
  168. Lee S, Kang BS (2005) Expression of Arabidopsis phytochelatin synthase 2 is too low to complement an AtPCS1-defective Cad1-3 mutant. Mol Cells 19:81–87PubMedGoogle Scholar
  169. Lee S, Petros D, Moon JS, Ko TS, Goldsbrough PB, Korban SS (2003a) Higher levels of ectopic expression of Arabidopsis phytochelatin synthase do not lead to increased cadmium tolerance and accumulation. Plant Physiol Biochem 41:903–910CrossRefGoogle Scholar
  170. Lee S, Moon JS, Ko TS, Petros D, Goldsbrough PB, Korban SS (2003b) Over expression of Arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress. Plant Physiol 131:656–663PubMedCentralPubMedCrossRefGoogle Scholar
  171. Lee J, Shim D, Song WY, Hwang I, Lee Y (2004) Arabidopsis metallothioneins 2a and 3 enhance resistance to cadmium when expressed in Vicia faba guard cells. Plant Mol Biol 54:805–815PubMedCrossRefGoogle Scholar
  172. Lee K, Bae DW, Kim SH, Han HJ, Liu X, Park HC, Lim CO, Lee SY, Chung WS (2010) Comparative proteomic analysis of the short-term responses of rice roots and leaves to cadmium. J Plant Physiol 167:161–168PubMedCrossRefGoogle Scholar
  173. Li YM, Chaney RL, Schneiter AA, Miller JF, Elias EM, Hammond JJ (1997) Screening for low grain cadmium phenotypes in sunflower, durum wheat and flax. Euphytica 94:23–30CrossRefGoogle Scholar
  174. Li YM, Chaney RL, Schneiter AA, Miller JF, Elias EM (2002) Screening for low grain cadmium phenotypes in sunflower, durum wheat and flax. Euphytica 94:23–30CrossRefGoogle Scholar
  175. Li Y, Dhankher OP, Carreira L, Balish RS, Meagher RB (2005) Arsenic and mercury tolerance and cadmium sensitivity in Arabidopsis plants expressing bacterial gamma-glutamylcysteine synthetase. Environ Toxicol Chem 24:1376–1386PubMedCrossRefGoogle Scholar
  176. Li JC, Guo JB, Xu WZ, Ma M (2007) RNA interference-mediated silencing of phytochelatin synthase gene reduce cadmium accumulation in rice seeds. J Integr Plant Biol 49:1032–1037CrossRefGoogle Scholar
  177. Li X, Ziadi N, Belanger G, Cai Z, Xu H (2011) Cadmium accumulation in wheat grain as affected by mineral N fertilizer and soil characteristics. Can J Soil Sci 91:521–531CrossRefGoogle Scholar
  178. Li WC, Ouyang Y, Ye ZH (2014) Accumulation of mercury and cadmium in rice from paddy soil near a mercury mine. Environ Toxicol Chem 33:2438–2447PubMedCrossRefGoogle Scholar
  179. Liang Y, Lei L, Nilsson J, Li H, Nordberg M, Bernard A, Nordberg GF, Bergdahl IA, Jin T (2012) Renal function after reduction in cadmium exposure: an 8-year follow-up of residents in cadmium-polluted areas. Environ Health Perspect 120:223–228PubMedCentralPubMedCrossRefGoogle Scholar
  180. Limei Z, Xiaoyong L, Tongbin C, Xiulan Y, Hua X, Bin W, Lixia W (2008) Regional assessment of cadmium pollution in agricultural lands and the potential health risk related to intensive mining activities: a case study in Chenzhou City, China. J Environ Sci 20:696–703CrossRefGoogle Scholar
  181. Lin CY, Trinh NN, Fu SF, Hsiung YC, Chia LC, Lin CW, Huang HJ (2013) Comparison of early transcriptome responses to copper and cadmium in rice roots. Plant Mol Biol 81:507–522PubMedCrossRefGoogle Scholar
  182. Lindblom SD, Abdel-Ghany S, Hanson BR, Hwang S, Terry N, Pilon-Smits EA (2006) Constitutive expression of a high-affinity sulfate transporter in Indian mustard affects metal tolerance and accumulation. J Environ Qual 35:726–733PubMedCrossRefGoogle Scholar
  183. Liu JG, Liang JS, Li KQ, Zhang ZJ, Yu BY, Lu XL, Yang JC (2003a) Correlations between cadmium and mineral nutrients in absorption and accumulation in various genotypes of rice under cadmium stress. Chemosphere 52:1467–1473PubMedCrossRefGoogle Scholar
  184. Liu JG, Li KQ, Xu JK, Liang JS, Lu XL, Yang JC, Zhu QS (2003b) Interaction of Cd and five mineral nutrients for uptake and accumulation in different rice cultivars and genotypes. Field Crop Res 83:271–281CrossRefGoogle Scholar
  185. Liu J, Zhu Q, Zhang Z, Xu J, Yang J, Wang MH (2005) Variation in cadmium accumulation among rice cultivars and types and the selection of cultivars for reducing cadmium in the diet. J Sci Food Agric 85:147–153CrossRefGoogle Scholar
  186. Liu J, Qian M, Cai G, Yang J, Zhu Q (2007) Uptake and translocation of Cd in different rice cultivars and the relation with Cd accumulation in rice grain. J Hazard Mater 143:443–447PubMedCrossRefGoogle Scholar
  187. Liu WT, Zhou QX, Sun YB, Liu R (2009) Identification of Chinese cabbage genotypes with low cadmium accumulation for food safety. Environ Pollut 157:1961–1967PubMedCrossRefGoogle Scholar
  188. Liu XM, Kim KE, Kim KC, Nguyen XC, Han HJ, Jung MS et al (2010a) Cadmium activates Arabidopsis MPK3 and MPK6 via accumulation of reactive oxygen species. Phytochemistry 71:614–618PubMedCrossRefGoogle Scholar
  189. Liu WT, Zhou QX, An J, Sun YB, Liu R (2010b) Variations in cadmium accumulation among Chinese cabbage cultivars and screening for Cd-safe cultivars. J Hazard Mater 173:737–743PubMedCrossRefGoogle Scholar
  190. Liu J, Qu P, Zhang W, Dong Y, Li L, Wang M (2014) Variations among rice cultivars in subcellular distribution of Cd: the relationship between translocation and grain accumulation. Environ Exp Bot 107:25–31CrossRefGoogle Scholar
  191. Lombi E, Zhao FJ, McGrath SP, Young SD, Sacchi GA (2001) Physiological evidence for a high-affinity cadmium transporter highly expressed in a Thlaspi caerulescens ecotype. New Phytol 149:53–60CrossRefGoogle Scholar
  192. Lu LL, Tian SK, Yang XE et al (2008) Enhanced root-to-shoot translocation of cadmium in the hyperaccumulating ecotype of Sedum alfredii. J Exp Bot 59:3203–3213PubMedCentralPubMedCrossRefGoogle Scholar
  193. Ma LQ, Komar KM, Tu C, Zhang WH, Cai Y, Kennelley ED (2001) A fern that hyperaccumulates arsenic—a hardy, versatile, fast-growing plant helps to remove arsenic from contaminated soils. Nature 409:579PubMedCrossRefGoogle Scholar
  194. Maestri E, Marmiroli M, Visioli G, Marmiroli N (2010) Metal tolerance and hyperaccumulation: costs and trade-offs between traits and environment. Environ Exp Bot 68:1–13CrossRefGoogle Scholar
  195. Matsuda K, Kobayashi E, Okubo  Y, Suwazono Y, Kido T, Nishijo M, Nakagawa H, Nogawa K (2003) Total Cadmium Intake and Mortality among Residents in the Jinzu River Basin, Japan. Arch Environ Health: Int J 58(4):218–222CrossRefGoogle Scholar
  196. Meharg AA (2002) Arsenic and old plants. New Phytol 156:1–8CrossRefGoogle Scholar
  197. Meharg AA, Norton G, Deacon C, Williams P, Adomako EE, Price A, Zhu Y, Li G, Zhao FJ, McGrath S, Villada A, Sommella A, Mangala P, De Silva CS, Brammer H, Dasgupta T, Islam MR (2013) Variation in rice cadmium related to human exposure. Environ Sci Technol 47:5613–5618PubMedCrossRefGoogle Scholar
  198. Mendoza-Cózatl DG, Jobe TO, Hauser F, Schroeder JI (2011) Long distance transport, vacuolar sequestration, tolerance, and transcriptional responses induced by cadmium and arsenic. Curr Opin Plant Biol 14:554–562PubMedCentralPubMedCrossRefGoogle Scholar
  199. Mendoza-Soto AB, Sánchez F, Hernández G (2012) MicroRNAs as regulators in plant metal toxicity response. Front Plant Sci 3:105PubMedCentralPubMedCrossRefGoogle Scholar
  200. Meyers MW, Fricke FL, Holmgren GG, Kubota SJ, Chaney RL (1982) Cadmium and lead in wheat grain and associated surface soils of major wheat production areas in United States. Agronomy Abstract 34Google Scholar
  201. Michele RD, Vurro E, Rigo C, Costa A, Li Elvir, Valentin MD, Careri M, Zottini M, di Toppi LS, Schiavo FL (2009) Nitric oxide is involved in cadmium-induced programmed cell death in Arabidopsis suspension cultures. Plant Physiol 150:217–228PubMedCentralPubMedCrossRefGoogle Scholar
  202. Migeon A, Blaudez D, Wilkins O, Montanini B, Campbell MM, Richaud P, Thomine S, Chalot M (2010) Genome-wide analysis of plant metal transporters, with an emphasis on poplar. Cell Mol Life Sci 67:3763–3784PubMedCrossRefGoogle Scholar
  203. Mills RF, Francini A, Ferreira da Rocha PS, Baccarini PJ, Aylett M, Krijger GC, Williams LE (2005) The plant P1B-type ATPase AtHMA4 transports Zn and Cd and plays a role in detoxification of transition metals supplied at elevated levels. FEBS Lett 579:783–791PubMedCrossRefGoogle Scholar
  204. Mills RF, Valdes B, Duke M, Peaston KA, Lahner B, Salt DE, Williams LE (2010) Functional significance of AtHMA4 C-terminal domain in planta. PLoS ONE 5:e13388PubMedCentralPubMedCrossRefGoogle Scholar
  205. Mills RF, Kerry A, Peaston JR, Williams LE (2012) HvHMA2, a P1BATPase from barley, is highly conserved among cereals and functions in Zn and Cd transport. PLoS ONE 7:e42640PubMedCentralPubMedCrossRefGoogle Scholar
  206. Milner MJ, Mitani-Ueno N, Yamaji N, Yokosho K, Craft E, Fei Z, Ebbs S, Clemencia Zambrano M, Ma JF, Kochian LV (2014) Root and shoot transcriptome analysis of two ecotypes of Noccaea caerulescens uncovers the role of NcNramp1 in Cd. Plant J 78:398–410PubMedCrossRefGoogle Scholar
  207. Mishima S, Kimura R, Inoue T (2004) Estimation of cadmium load on Japanese farmland associated with the application of chemical fertilizers and livestock excreta. Soil Sci Plant Nutr 50:263–267CrossRefGoogle Scholar
  208. Misra S, Gedamu L (1989) Heavy metal tolerant transgenic Brassica napus L. and Nicotiana tabacum L. plants. Theor Appl Genet 78:161–168PubMedCrossRefGoogle Scholar
  209. Miyadate H, Adachi S, Hiraizumi A, Tezuka K, Nakazawa N, Kawamoto T, Katou K, Kodama I, Sakurai K, Takahashi H, Satoh-Nagasawa N, Watanabe A, Fujimura T, Akagi H (2011) OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles. New Phytol 189:190–199PubMedCrossRefGoogle Scholar
  210. Mobin M, Khan NA (2007) Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. J Plant Physiol 164:601–610PubMedCrossRefGoogle Scholar
  211. Mohanpuria P, Rana NK, Yadav SK (2007) Cadmium induced oxidative stress influence on glutathione metabolic genes of Camellia sinensis (L.) O. Kuntze. Environ Toxicol 22:368–374PubMedCrossRefGoogle Scholar
  212. Morel M et al (2009) AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis. Plant Physiol 149:894–904PubMedCentralPubMedCrossRefGoogle Scholar
  213. Murakami M, Ae N, Ishikawa S (2007) Phytoextraction of cadmium by rice (Oryza sativa L.), soybean (Glycine max (L.) Merr.), and maize (Zea mays L.). Environ Pollut 145:96–103PubMedCrossRefGoogle Scholar
  214. Murakami M, Nakagawa F, Ae N, Ito M, Arao T (2009) Phytoextraction by rice capable of accumulating Cd at high levels: reduction of Cd content of rice grain. Environ Sci Technol 43:5878–5883PubMedCrossRefGoogle Scholar
  215. Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216CrossRefGoogle Scholar
  216. Nakanishi H, Ogawa I, Ishimaru Y, Mori S, Nishizawa NK (2006) Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRT1 and OsIRT2 in rice. Soil Sci Plant Nutr 52:464–469CrossRefGoogle Scholar
  217. Nawrot T et al (2006) Environmental exposure to cadmium and risk of cancer: a prospective population-based study. Lancet Oncol 7:119–126PubMedCrossRefGoogle Scholar
  218. Ning H, Zhang C, Yao Y, Yu D (2010) Over expression of a soybean O-acetylserine (thiol) lyase-encoding geneGmOASTL4 in tobacco increases cysteine levels and enhances tolerance to cadmium stress. Biotechnol Lett 32:557–564PubMedCrossRefGoogle Scholar
  219. Nocito FF, Lancilli C, Dendena B, Luccihini G, Sacchi GA (2011) Cadmium retention in rice roots is influenced by cadmium availability, chelation and translocation. Plant, Cell Environ 34:994–1008CrossRefGoogle Scholar
  220. Nogawa K, Kobayashi E, Okubo Y, Suwazono Y (2004) Environmental cadmium exposure, adverse effects and preventive measures in Japan. Biometals 17:581–587PubMedCrossRefGoogle Scholar
  221. Nordberg GF, Jin T, Kong Q, Ye T, Cai S, Wang Z, Zhuang F, Wu X (1997) Biological monitoring of cadmium exposure and renal effects in a population group residing in a polluted area in China. Sci Total Environ 199:111–114PubMedCrossRefGoogle Scholar
  222. Nordberg G, Jin T, Bernard A, Fierens S, Buchet JP, Ye T et al (2002) Low bone density and renal dysfunction following environmental cadmium exposure in China. Ambio 31:478–481PubMedCrossRefGoogle Scholar
  223. Norton GJ, Deacon CM, Xiong L, Huang S, Meharg AA, Price AH (2009) Genetic mapping of the rice ionome in leaves and grain: identification of QTLs for 17 elements including arsenic, cadmium, iron and selenium. Plant Soil. doi: 10.1007/s11104-009-0141-8 Google Scholar
  224. Oono Y, Yazawa T, Kawahara Y, Kanamori H, Kobayashi F, Sasaki H, Mori S, Wu J, Handa H, Itoh T, Matsumoto T (2014) Genome-wide transcriptome analysis reveals that cadmium stress signaling controls the expression of genes in drought stress signal pathways in rice. PLoS ONE 9:e96946PubMedCentralPubMedCrossRefGoogle Scholar
  225. Osada M, Izuno T, Kobayashi M, Sugita M (2011) Relationship between environmental exposure to cadmium and bone metabolism in a non-polluted area of Japan. Environ Health Prev Med 16:341–349PubMedCentralPubMedCrossRefGoogle Scholar
  226. Ovecka M, Takac T (2014) Managing heavy metal toxicity stress in plants: biological and biotechnological tools. Biotechnol Adv 32:73–86PubMedCrossRefGoogle Scholar
  227. Park J, Song WY, Ko D, Eom Y, Hansen TH, Schiller M, Lee TG, Martinoia E, Lee Y (2012) The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. Plant J 69:278–288PubMedCrossRefGoogle Scholar
  228. Pavlíková D, Macek T, Macková M, Száková J, Balík J (2004) Cadmium tolerance and accumulation in transgenic tobacco plants with a yeast metallothionein combined with a polyhistidine tail. Int Biodeterior Biodegrad 54:233–237CrossRefGoogle Scholar
  229. Penner GA, Clarke J, Bezte LJ, Leisle D (1995) Identification of RAPD markers linked to a gene governing cadmium uptake in durum wheat. Genome 38:543–547PubMedCrossRefGoogle Scholar
  230. Perfus-Barbeoch L, Leonhardt N, Vavasseur A, Forestier C (2002) Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. Plant J 32:539–548PubMedCrossRefGoogle Scholar
  231. Picault N, Cazalé AC, Beyly A, Cuiné S, Carrier P, Luu DT, Forestier C, Peltier G (2006) Chloroplast targeting of phytochelatin synthase in Arabidopsis: effects on heavy metal tolerance and accumulation. Biochimie 88:1743–1750PubMedCrossRefGoogle Scholar
  232. Pollard AJ, Powell KD, Harper FA, Smith JAC (2002) The genetic basis of metal hyperaccumulation in plants. Crit Rev Plant Sci 21:539–566CrossRefGoogle Scholar
  233. Polle A, Schuetzenduebel A (2003) Heavy metal signalling in plants: linking cellular and organismic responses. In: Hirt H, Shinozaki K (eds) Plant responses to abiotic stress. Springer, Berlin-Heidelberg, pp 187–215CrossRefGoogle Scholar
  234. Pomponi M, Censi V, Di Girolamo V, De Paolis A, di Toppi LS, Aromolo R, Costantino P, Cardarelli M (2006) Overexpression of Arabidopsis phytochelatin synthase in tobacco plants enhances Cd(2 +) tolerance and accumulation but not translocation to the shoot. Planta 223:180–190PubMedCrossRefGoogle Scholar
  235. Pourghasemian N, Ehsanzadeh P, Greger M (2013) Genotypic variation in safflower (Carthamus spp.) cadmium accumulation and tolerance affected by temperature and cadmium levels. Environ Exp Bot 87:218–226CrossRefGoogle Scholar
  236. Pozniak CJ (2013) CDC Vivid durum wheat. Can J Plant Sci 93:137–141CrossRefGoogle Scholar
  237. Pozniak CJ, Fox SL, Knott DR (2009) CDC Verona durum wheat. Can J Plant Sci 89:321–324CrossRefGoogle Scholar
  238. Prasad MNV (1999) Metallothioneins and metal binding complexes in plant. In: Prasad MNV, Hagemeyer J (eds) Heavy metal stress in plant: from molecule to ecosystem. Springer, Berlin, pp 51–72CrossRefGoogle Scholar
  239. Qin P, Wang L, Liu K, Mao S, Li Z, Gao S, Shi S, Liu X (2015) Genome wide association study of Aegilops tauschii traits under seedling-stage cadmium stress. Crop J. doi: 10.1016/j.cj.2015.04.005 Google Scholar
  240. Rahman MA, Rahman MM, Reichman SM, Lim R, Naidu R (2014) Heavy metals in Australian grown and imported rice and vegetables on sale in Australia: health hazard. Ecotoxicol Environ Saf 100:53–60PubMedCrossRefGoogle Scholar
  241. Ramesh SA, Shin R, Eide DJ, Schachtman DP (2003) Differential metal selectivity and gene expression of two zinc transporters from rice. Plant Physiol 133:126–134PubMedCentralPubMedCrossRefGoogle Scholar
  242. Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169–181PubMedCrossRefGoogle Scholar
  243. Rauser WE (1995) Phytochelatins and related peptides. Structure, biosynthesis and function. Plant Physiol 109:1141–1149PubMedCentralPubMedCrossRefGoogle Scholar
  244. Riesen O, Feller U (2005) Redistribution of nickel, cobalt, manganese, zinc and cadmium via the phloem in young and in maturing wheat. J Plant Nutr 28:421–430CrossRefGoogle Scholar
  245. Rodríguez-Serrano M, Romero-Puertas MC, Pazmino DM, Testillano PS, Risueno MC, DelRío LA et al (2009) Cellular response of pea plants to cadmium toxicity: cross talk between reactive oxygen species, nitric oxide, and calcium. Plant Physiol 150:229–243PubMedCentralPubMedCrossRefGoogle Scholar
  246. Roosens N, Verbruggen N, Meerts P, Ximenez-Embun P, Smith JAC (2003) Natural variation in cadmium tolerance and its relationship to metal hyperaccumulation for seven populations of Thlaspi caerulescens from Western Europe. Plant, Cell Environ 26:1657–1672CrossRefGoogle Scholar
  247. Rout GR, Samantaray S, Das P (2000) Differential cadmium tolerance of mung bean and rice genotypes in hydroponic culture. Acta Agric Scand Sect B Soil Plant Sci 49:234–241Google Scholar
  248. Saito T (2004) Cadmium input from rainfall into fields in the city of Tsukuba. NIAES Annual Report 2004. National Institute for Agro-Environmental Sciences, Tsukuba, pp 54–55Google Scholar
  249. Salazar MJ, Rodriguez JH, Nieto GL, Pignata ML (2012) Effects of heavy metal concentrations (Cd, Zn and Pb) in agricultural soils near different emission sources on quality, accumulation and food safety in soybean [Glycine max (L.) Merrill]. J Hazard Mater 233–234:244–253PubMedCrossRefGoogle Scholar
  250. Salt DE, Rauser WE (1995) Mg ATP-dependent transport of phytochelatins across the tonoplast of oat roots. Plant Physiol 107:1293–1301PubMedCentralPubMedGoogle Scholar
  251. Salt DE, Wanger GJ (1993) Cadmium transport across tonoplast of vesicles from oat roots. Evidence for a Cd2+/H+ antiport activity. J Biol Chem 268:12297–12302PubMedGoogle Scholar
  252. Salt DE, Blaylock M, Kumar NPBA, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13:468–474PubMedCrossRefGoogle Scholar
  253. Sandalio LM, Dalurzo HC, Gomez M, Romero-Puertas MC, del Rio LA (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plant. J Exp Bot 52:2115–2126PubMedGoogle Scholar
  254. Sanitá di Toppi L, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130CrossRefGoogle Scholar
  255. Sanjaya Hsiao PY, Su RC, Ko SS, Tong CG, Yang RY, Chan MT (2008) Overexpression of Arabidopsis thaliana tryptophan synthase beta 1 (AtTSB1) in Arabidopsis and tomato confers tolerance to cadmium stress. Plant, Cell Environ 31:1074–1085CrossRefGoogle Scholar
  256. Sasaki A, Yamaji Y, Yokosho K, Ma JF (2012) Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell 24:2155–2167PubMedCentralPubMedCrossRefGoogle Scholar
  257. Sasaki A, Yamaji N, Ma JF (2014) Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice. J Exp Bot. doi: 10.1093/jxb/eru340 Google Scholar
  258. Satarug S, Garrett SH, Sens MA, Sens DA (2010) Cadmium, environmental exposure, and health outcomes. Environ Health Perspect 118:182–190PubMedCentralPubMedCrossRefGoogle Scholar
  259. Sato H, Shirasawa S, Maeda H, Nakagomi K, Kaji R, Ohta H, Yamaguchi M, Nishio T (2011) Analysis of QTL for lowering cadmium concentration in rice grains from ‘LAC23’. Breed Sci 61:196–200CrossRefGoogle Scholar
  260. Satoh-Nagasawa N, Mori M, Nakazawa N, Kawamoto T, Nagato Y, Sakurai K, Takahashi H, Watanabe A, Akagi H (2012) Mutations in rice (Oryza sativa) heavy metal ATPase 2 (OsHMA2) restrict the translocation of zinc and cadmium. Plant Cell Physiol 53:213–224PubMedCrossRefGoogle Scholar
  261. Semane B, Dupae J, Cuypers A, Noben JP, Tuomainen M, Tervahauta A, Kärenlampi S, Van Belleghem F, Smeets K, Vangronsveld J (2010) Leaf proteome responses of Arabidopsis thaliana exposed to mild cadmium stress. J Plant Physiol 167:247–254PubMedCrossRefGoogle Scholar
  262. Sergeant K, Kieffer P, Dommes J, Hausman JF, Renaut J (2014) Proteomic changes in leaves of poplar exposed to both cadmium and low-temperature. Environ Exp Bot 106:112–123CrossRefGoogle Scholar
  263. Sharma S, Dietz KJ (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50PubMedCrossRefGoogle Scholar
  264. Shi J, Li L, Pan G (2009) Variation of grain Cd and Zn concentrations of 110 hybrid rice cultivars grown in a low-Cd paddy soil. J Environ Sci (China) 21:168–172CrossRefGoogle Scholar
  265. Shim D, Hwang JU, Lee J, Lee S, Choi Y, An G, Martinoia E, Lee Y (2009) Orthologs of the class A4 heat shock transcription factor HsfA4a confer cadmium tolerance in wheat and rice. Plant Cell 21:4031–4043PubMedCentralPubMedCrossRefGoogle Scholar
  266. Shimbo S, Zhang ZW, Watanabe T, Nakatsuka H, Matsuda-Inoguchi N, Higashikawa K, Ikeda M (2001) Cadmium and lead contents in rice and other cereal products in Japan in 1998–2000. Sci Total Environ 281:165–175PubMedCrossRefGoogle Scholar
  267. Shimo H, Ishimura Y, An G, Yamakawa T, Nakanishi H, Nishizawa NK (2011) Low cadmium (LCD), a novel gene related to cadmium tolerance and accumulation in rice. J Exp Bot. doi: 10.1093/jxb/err300 Google Scholar
  268. Shu WS (1997) Revegetation of lead/zinc maine tailings. Ph.D.Thesis, Zhongshan University, Guangzhou, P.R. ChinaGoogle Scholar
  269. Shukla D, Kesari R, Mishra S, Dwivedi S, Tripathi RD, Nath P, Trivedi PK (2012) Expression of phytochelatin synthase from aquatic macrophyte Ceratophyllum demersum L. enhances cadmium and arsenic accumulation in tobacco. Plant Cell Rep 31:1687–1699PubMedCrossRefGoogle Scholar
  270. Shute T, Macfie SM (2006) Cadmium and zinc accumulation in soybean: a threat to food safety? Sci Total Environ 371:63–73PubMedCrossRefGoogle Scholar
  271. Siemianowski O, Mills RF, Williams LE, Antosiewicz DM (2011) Expression of the P-1B-type ATPase AtHMA4 in tobacco modifies Zn and Cd root to shoot partitioning and metal tolerance. Plant Biotechnol J 9:64–74PubMedCrossRefGoogle Scholar
  272. Siemianowski O, Barabasz A, Kendziorek M, Ruszczyńska A, Bulska E, Williams LE, Antosiewicz DM (2014) HMA4 expression in tobacco reduces Cd accumulation due to the induction of the apoplastic barrier. J Exp Bot 165:125–1139Google Scholar
  273. Simmon RW, Pongsakul P, Saiyasitpanich D, Klinphoklap S (2005) Elevated levels of cadmium and zinc in paddy soils and elevated levels of cadmium in rice grain downstream of a zinc mineralized area in Thailand: implications for public health. Environ Geochem Health 27:501–511CrossRefGoogle Scholar
  274. Singh S, Eapen S, D’Souza SF (2006) Cadmium accumulation and its influence on lipid per oxidation and antioxidative system in an aquatic plant, Bacopa monnieri L. Chemosphere 62:233–246PubMedCrossRefGoogle Scholar
  275. Song WY, Sohn EJ, Martinoia E, Lee YJ, Yang YY, Jasinski M, Forestier C, Hwang I, Lee Y (2003) Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nat Biotechnol 21:914–919PubMedCrossRefGoogle Scholar
  276. Sriprachote A, Kanyawongha P, Ochiai K, Matoh T (2012) Current situation of cadmium-polluted paddy soil, rice and soybean in the Mae Sot District, Tak Province, Thailand. Soil Sci Plant Nutr 58:349–359CrossRefGoogle Scholar
  277. Srivastava S, Srivastava AK, Suprasanna P, D’Souza F (2013) Identification and profiling of arsenic stress-induced microRNAs in Brassica juncea. J Exp Bot 64:303–315PubMedCrossRefGoogle Scholar
  278. Steffens JC (1990) The heavy-metal binding peptides of plants. Annu Rev Plant Physiol Plant Mol Biol 41:553–575CrossRefGoogle Scholar
  279. Stobart AK, Griffits W, Bukhari IA, Sherwood RP (1985) The effects of Cd2+ on the biosynthesis of chlorophyll in leaves of barley. Physiol Plant 63:293–298CrossRefGoogle Scholar
  280. Stroinski A, Gizewska K, Zielezinska M (2013) Abscisic acid is required in transduction of cadmium signal to potato roots. Biol Plant 57:121–127CrossRefGoogle Scholar
  281. Sugiyama M, Ae N, Hajika M (2011) Developing of a simple method for screening soybean seedling cadmium accumulation to select soybean genotypes with low seed cadmium. Plant Soil 341:413–422CrossRefGoogle Scholar
  282. Suzuki N, Koizumi N, Sano H (2001) Screening of cadmium responsive genes in Arabidopsis thaliana. Plant, Cell Environ 24:1177–1188CrossRefGoogle Scholar
  283. Takahashi Y, Shomura A, Sasaki T, Yano M (2001) Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the alpha subunit of protein kinase CK2. Proc Natl Acad Sci USA 98:7922–7927PubMedCentralPubMedCrossRefGoogle Scholar
  284. Takahashi R, Ishimaru Y, Senoura T, Shimo H, Ishikawa S, Arao T, Nakanishi H, Nishizawa NK (2011) The OsNRAMP1 iron transporter is involved in Cd accumulation in rice. J Exp Bot 62:4843–4850PubMedCentralPubMedCrossRefGoogle Scholar
  285. Takahashi R, Ishimaru Y, Shimo H, Ogo Y, Senoura T, Nishizawa NK, Nakanishi H (2012a) The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice. Plant, Cell Environ 35:1948–1957CrossRefGoogle Scholar
  286. Takahashi R, Bashir K, Ishimaru Y, Nishizawa NK, Nakanishi H (2012b) The role of heavy-metal ATPases, HMAs, in zinc and cadmium transport in rice. Plant Signal Behav 7:1605–1607PubMedCentralPubMedCrossRefGoogle Scholar
  287. Takahashi R, Ishimaru Y, Shimo H, Bashir K, Senoura T, Sugimoto K, Ono K et al (2014) From laboratory to field: OsNRAMP5-knockdown rice is a promising candidate for Cd phytoremediation in paddy fields. PLoS ONE 9:e98816PubMedCentralPubMedCrossRefGoogle Scholar
  288. Tazib T, Ikka T, Kuroda K, Kobayashi Y, Kimura K, Koyama H (2009) Quantitative trait loci controlling resistance to cadmium rhizotoxicity in two recombinant inbred populations of Arabidopsis thaliana are partially shared by those for hydrogen peroxide resistance. Physiol Plant 136:395–406PubMedCrossRefGoogle Scholar
  289. Teeyakasem W, Nishijo M, Honda R, Satarug S, Swaddiwudhipong W, Ruangyuttikarn W (2007) Monitoring of cadmium toxicity in a Thai population with high-level environmental exposure. Toxicol Lett 169:185–195PubMedCrossRefGoogle Scholar
  290. Tezuka K, Miyadate H, Katou K, Kodama I, Matsumoto S, Kawamoto T, Masaki S, Satoh H, Yamaguchi M, Sakurai K, Takahashi H, Satoh-Nagasawa N, Watanabe A, Fujimura T, Akagi H (2010) A single recessive gene controls cadmium translocation in the cadmium hyper accumulating rice cultivar Cho-Ko-Koku. Theor Appl Genet 120:1175–1182PubMedCrossRefGoogle Scholar
  291. Thomine S, Wang RC, Ward JM, Crawford NM, Schroeder JI (2000) Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proc Natl Acad Sci USA 97:4991–4996PubMedCentralPubMedCrossRefGoogle Scholar
  292. Tiwari M, Sharma D, Dwivedi S, Singh M, Tripathi RD, Trivedi PK (2014) Expression in Arabidopsis and cellular localization reveal involvement of rice NRAMP, OsNRAMP1, in arsenic transport and tolerance. Plant, Cell Environ 37:140–152CrossRefGoogle Scholar
  293. Tripathi RD et al (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol 25:158–165PubMedCrossRefGoogle Scholar
  294. Tsukahara T, Ezaki T, Moriguchi J, Furuki K, Shimbo S, Matsuda-Inoguchi Ikeda M (2003) Rice as the most influential source of cadmium intake among general Japanese population. Tot Sci Environ 305:41–51CrossRefGoogle Scholar
  295. Ueno D, Kono I, Yokosho K, Ando T, Yano M, Ma JF (2009a) A major quantitative trait locus controlling cadmium translocation in rice (Oryza sativa). New Phytol 182:644–653PubMedCrossRefGoogle Scholar
  296. Ueno D, Koyama E, Kono I, Ando T, Yano M, Ma JF (2009b) Identification of a novel major quantitative trait locus controlling distribution of Cd between roots and shoots in rice. Plant Cell Physiol 50:2223–2233PubMedCrossRefGoogle Scholar
  297. Ueno D, Yamaji N, Kono I, Huang CF, Ando T, Yano M, Ma JF (2010) Gene limiting cadmium accumulation in rice. Proc Natl Acad Sci USA 107:16500–16505PubMedCentralPubMedCrossRefGoogle Scholar
  298. Ueno D, Koyama E, Yamaji N, Ma JF (2011) Physiological, genetic, and molecular characterization of a high-Cd-accumulating rice cultivar, Jarjan. J Exp Bot 62:2265–2272PubMedCrossRefGoogle Scholar
  299. Uetani M, Kobayashi E, Suwazono Y, Honda R, Nishijo M, Nakagawa H, Kido T, Nogawa K (2006) Tissue cadmium (Cd) concentrations of people living in a Cd polluted area, Japan. Biometals 19:521–525PubMedCrossRefGoogle Scholar
  300. UNEP (United Nations Environment Programme) (2008) Draft Final Review of Scientific Information on Cadmium.
  301. Uraguchi S, Fujiwara T (2012) Cadmium transport and tolerance in rice: perspectives for reducing grain cadmium accumulation. Rice 5:5PubMedCentralPubMedCrossRefGoogle Scholar
  302. Uraguchi S, Fujiwara T (2013) Rice breaks ground for cadmium-free cereals. Curr Opin Plant Biol 16:328–334PubMedCrossRefGoogle Scholar
  303. Uraguchi S, Mori S, Kuramata M, Kawasaki A, Arao T, Ishikawa S (2009) Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice. J Exp Bot 60:2677–2688PubMedCentralPubMedCrossRefGoogle Scholar
  304. Uraguchi S, Kamiya T, Sakamoto T, Kasai K, Sato Y, Nagamura Y, Yoshida A, Kyozuka J, Ishikawa S, Fujiwara T (2011) Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains. Proc Natl Acad Sci USA 108:20959–20964PubMedCentralPubMedCrossRefGoogle Scholar
  305. Venkataramaiah N, Ramakrishna SV, Sreevathsa R (2011) Overexpression of phytochelatin synthase (AtPCS) in rice for tolerance to cadmium stress. Biol Plant 66:1060–1073Google Scholar
  306. Verbruggen N, Hermans C, Schat H (2009) Mechanisms to cope with arsenic or cadmium excess in plants. Curr Opin Plant Biol 12:364–372PubMedCrossRefGoogle Scholar
  307. Verbruggen N, Hanikenne M, Clmens S (2013) A more complete picture of metal hyperaccumulation through next-generation sequencing technologies. Front Plant Sci 4:1–7CrossRefGoogle Scholar
  308. Verret F, Gravot A, Auroy P, Leonhardt N, David P, Nussaume L, Vavasseur A, Richaud P (2004) Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance. FEBS Lett 576:306–312PubMedCrossRefGoogle Scholar
  309. Visoottiviseth P, Francesconi K, Sridokchan W (2002) The potential of Thai indigenous plant species for the phytoremediation of arsenic contaminated land. Environ Pollut 118:453–461PubMedCrossRefGoogle Scholar
  310. Vollmann J, Losak T, Pachner M, Watanabe D, Musilova L, Hlusek J (2014) Soybean cadmium concentration: validation of a QTL affecting seed cadmium accumulation for improved food safety. Euphytica. doi: 10.1007/s10681-014-1297-8 Google Scholar
  311. Wang Y, Bjorn LO (2014) Heavy metal pollution in Guangdong Province, China, and the strategies to manage the situation. Front Plant Sci 2:1–12Google Scholar
  312. Wang F, Wang Z, Zhu C (2012) Hetero expression of the wheat phytochelatin synthase gene (TaPCS1) in rice enhances cadmium sensitivity. Acta Biochim Biophys Sin (Shanghai) 44:886–893CrossRefGoogle Scholar
  313. Wang Y, Xiao X, Zhang T, Kang H, Zeng J, Fan X, Sha L, Zhang H, Yu K, Zhou Y (2014a) Cadmium treatment alters the expression of five genes at the Cda1 locus in two soybean cultivars [Glycine Max (L.) Merr]. Sci World J 2014:1–8Google Scholar
  314. Wang Z, Hu X, Xu Z, Cai L, Wang J, Zeng D, Hong H (2014b) Cadmium in agricultural soils, vegetables and rice and potential health risk in vicinity of Dabaoshan Mine in Shaoguan, China. J Cent South Univ 21:2004–2010CrossRefGoogle Scholar
  315. Wangeline AL, Burkhead JL, Hale KL, Lindblom SD, Terry N, Pilon M, Pilon-Smits EA (2004) Overexpression of ATP sulfurylase in Indian mustard: effects on tolerance and accumulation of twelve metals. J Environ Qual 33:54–60PubMedCrossRefGoogle Scholar
  316. Watanabe T, Nakatsuka H, Ikeda M (1989) Cadmium and lead contents in rice available in various areas of Asia. Sci Total Environ 80:175–184PubMedCrossRefGoogle Scholar
  317. Watanabe T, Shimbo S, Moon CS, Zhang ZW, Ikeda M (1996) Cadmium contents in rice samples from various areas in the world. Sci Tot Environ 184:191–196CrossRefGoogle Scholar
  318. Watanabe T, Zhang ZW, Moon CS, Shimbo S, Nakatsuka H, Matsuda-Inoguchi N, Higashikawa K, Ikeda M (2000) Cadmium exposure of women in general populations in Japan during 1991–1997 compared with 1977–1981. Int Arch Occup Environ Health 73:26–34PubMedCrossRefGoogle Scholar
  319. Watanabe Y, Kobayashi E, Okubo Y, Suwazono Y, Kido T, Nogawa K (2002) Relationship between cadmium concentration in rice and renal dysfunction in individual subjects of the Jinzu River basin determined using a logistic regression analysis. Toxicol 172:93–101CrossRefGoogle Scholar
  320. Watanabe T, Shimbo S, Nakatsuka H, Koizumi A, Higashikawa K, Matsuda-Inoguchi N et al (2004) Gender-related difference, geographical variation and time trend in dietary cadmium intake in Japan. Sci Total Environ 329:17–27PubMedCrossRefGoogle Scholar
  321. White PJ, Brown PH (2010) Plant nutrition for sustainable development and global health. Ann Bot 105:1073–1080PubMedCentralPubMedCrossRefGoogle Scholar
  322. Wiebe K, Harris NS, Faris JD, Clarke JM, Knox RE, Taylor GJ, Pozniak CJ (2010) Targeted mapping of Cdu1, a major locus regulating grain cadmium concentration in durum wheat (Triticum turgidum L. var durum). Theor Appl Genet 121:1047–1058PubMedCrossRefGoogle Scholar
  323. William PN, Lei M, Sun G, Huang Q, Lu Y, Deacon C, Meharg AA, Zhu YG (2009) Occurrence and partitioning of cadmium, arsenic and lead in mine impacted paddy rice: Hunan, China. Environ Sci Technol 43:637–642CrossRefGoogle Scholar
  324. Wojas S, Clemens S, Hennig J, Sklodowska A, Kopera E, Schat H, Bal W, Antosiewicz DM (2008) Overexpression of phytochelatin synthase in tobacco: distinctive effects of AtPCS1 and CePCS genes on plant response to cadmium. J Exp Bot 59:2205–2219PubMedCentralPubMedCrossRefGoogle Scholar
  325. Wojas S, Hennig J, Plaza S, Geisler M, Siemianowski O, Skłodowska A, Ruszczyńska A, Bulska E, Antosiewicz DM (2009) Ectopic expression of Arabidopsis ABC transporter MRP7 modifies cadmium root-to-shoot transport and accumulation. Environ Pollut 157:2781–2789PubMedCrossRefGoogle Scholar
  326. Wojas S, Ruszczyńska A, Bulska E, Clemens S, Antosiewicz DM (2010) The role of subcellular distribution of cadmium and phytochelatins in the generation of distinct phenotypes of AtPCS1- and CePCS3-expressing tobacco. J Plant Physiol 167:981–988PubMedCrossRefGoogle Scholar
  327. Wong CK, Cobbett CS (2009) HMA P-type ATPases are the major mechanism for root-to-shoot Cd translocation in Arabidopsis thaliana. New Phytol 181:71–78PubMedCrossRefGoogle Scholar
  328. Wu X, Liang Y, Jin T, Ye T, Kong Q, Wang Z et al (2008) Renal effects evolution in a Chinese population after reduction of cadmium exposure in rice. Environ Res 108:233–238PubMedCrossRefGoogle Scholar
  329. Wu Q, Shigaki T, Williams KA, Han JS, Kim CK, Hirschi KD, Park S (2011) Expression of an Arabidopsis Ca2+/H+ antiporter CAX1 variant in petunia enhances cadmium tolerance and accumulation. J Plant Physiol 168:167–173PubMedCrossRefGoogle Scholar
  330. Wu H, Chen C, Du J, Liu H, Cui Y, Zhang Y, He Y, Wang Y, Chu C, Feng Z, Li J, Ling HQ (2012) Co-over expression FIT with AtbHLH38 or AtbHLH39 in Arabidopsis-enhanced cadmium tolerance via increased cadmium sequestration in roots and improved iron homeostasis of shoots. Plant Physiol 158:790–800PubMedCentralPubMedCrossRefGoogle Scholar
  331. Wu L, Ge Q, Zhang J, Zhou J, Xu J (2013) Proteomic analysis of Cd-responsive proteins in Solanum torvum. Plant Mol Biol Rep 31:485–491CrossRefGoogle Scholar
  332. Wu D, Sato K, Ma JF (2015) Genome-wide association mapping of cadmium accumulation in different organs of barley. New Phytol. doi: 10.1111/nph.13512 Google Scholar
  333. Xie W, Yang J, Chen S, Chen D (2008) Variation of Cd, Pb, Hg contents of rice in coastal region of Fujian province. Ecol Environ  17:206–209Google Scholar
  334. Xu W, Shi W, Liu F, Ueda A, Takabe T (2008) Enhanced zinc and cadmium tolerance and accumulation in transgenic Arabidopsis plants constitutively overexpressing a barley gene (HvAPX1) that encodes a peroxisomal ascorbate peroxidase. Botany 86:567–575CrossRefGoogle Scholar
  335. Xu L, Wang L, Gong Y, Dai W, Wang Y, Zhu X, Wen T, Liu L (2012) Genetic linkage map construction and QTL mapping of cadmium accumulation in radish (Raphanus sativus L.). Theor Appl Genet 125:659–670PubMedCrossRefGoogle Scholar
  336. Xu L, Wang Y, Zhai L, Xu Y, Wang L, Zhu X, Gong Y, Yu R, Limera C, Liu L (2013) Genome-wide identification and characterization of cadmium-responsive microRNAs and their target genes in radish (Raphanus sativus L.) roots. J Exp Bot 64:4271–4287PubMedCentralPubMedCrossRefGoogle Scholar
  337. Xue D, Chen M, Zhang G (2009) Mapping of QTLs associated with cadmium tolerance and accumulation during seedling stage in rice (Oryza sativa L.). Euphytica 165:587–596CrossRefGoogle Scholar
  338. Yan YF, Letari P, Lee KJ, Kim MY, Lee SH, Lee BW (2013) Identification of quantitative trait loci for cadmium accumulation and distribution in rice (Oryza sativa). Genome 56:227–232PubMedCrossRefGoogle Scholar
  339. Yang XE, Long XX, Ye HB, He ZL, Calvert DV, Stoffella PJ (2004) Cadmium tolerance and hyper accumulation in a new Zn hyper accumulating plant species (Sedum alfredii Hance). Plant Soil 259:181–189CrossRefGoogle Scholar
  340. Yang QW, Lan CY, Wang HB, Zhuang P, Shu WS (2006) Cadmium in soil–rice system and health risk associated with the use of untreated mining wastewater for irrigation in Lechang, China. Agric Water Manag 84:147–152CrossRefGoogle Scholar
  341. Ye Y, Li Z, Xing D (2013) Nitric oxide promotes MPK6-mediatedcaspase- 3-like activation in cadmium-induced Arabidopsis thaliana programmed cell death. Plant, Cell Environ 36:1–15CrossRefGoogle Scholar
  342. Yeh CM, Chien PS, Huang HJ (2007) Distinct signaling pathways for induction of MAP kinase activities by cadmium and copper in rice roots. J Exp Bot 58:659–671PubMedCrossRefGoogle Scholar
  343. Yu H, Wang J, Fang W, Yuan J, Yang Z (2006) Cadmium accumulation in different rice cultivars and screening for pollution-safe cultivars of rice. Sci Total Environ 370:302–309PubMedCrossRefGoogle Scholar
  344. Yu LJ, Luo YF, Liao B, Xie LJ, Chen L, Xiao S, Li JT, Hu SN (2012) Comparative transcriptome analysis of transporters, phytohormone and lipid metabolism pathways in response to arsenic stress in rice (Oryza sativa). New Phytol 195:97–112PubMedCrossRefGoogle Scholar
  345. Yuan L, Yang S, Liu B, Zhang M, Wu K (2012) Molecular characterization of a rice metal tolerance protein, OsMTP1. Plant Cell Rep 31:67–79PubMedCrossRefGoogle Scholar
  346. Zdunić Z, Grljušić S, Ledenčan T, Duvnjak T, Simić D (2014) Quantitative trait loci mapping of metal concentrations in leaves of the maize IBM population. Hereditas 151:55–60PubMedCrossRefGoogle Scholar
  347. Zhai L, Liao X, Chen T, Yan X, Xie H, Wu B, Wang L (2008) Regional assessment of cadmium pollution in agricultural lands and the potential health risk related to intensive mining activities: a case study in Chenzhou City, China. J Environ Sci (China) 20:696–703CrossRefGoogle Scholar
  348. Zhang J, Huang W (2000) Advances on physiological and ecological effects of cadmium on plants. Acta Ecol Sin 20:514–523Google Scholar
  349. Zhang G, Fukami M, Sekimoto H (2002) Influence of cadmium on mineral concentrations and yield components in wheat genotypes differing in Cd tolerance at seedling stage. Field Crop Res 77:93–98CrossRefGoogle Scholar
  350. Zhang LY, Li LQ, Pan GX (2009) Variation of Cd, Zn and Se contents of polished rice and the potential health risk for subsistence-diet farmers from typical areas of South China. Chin J Environ Sci 30:2792–2797Google Scholar
  351. Zhang X, Zhang GP, Guo L, Wang H, Zeng D, Dong G (2011) Identification of quantitative trait loci for Cd and Zn concentrations of brown rice grown in Cd-polluted soils. Euphytica 180:173–179CrossRefGoogle Scholar
  352. Zhao FJ, Hamon RE, Lombi E, McLaughlin MJ, McGrath SP (2002) Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. J Exp Bot 53:535–543PubMedCrossRefGoogle Scholar
  353. Zhao C-R, Ikka T, Sawaki Y, Kobayashi Y, Suzuki Y, Hibino T, Sato S, Sakurai N, Shibata D, Koyama H (2009) Comparative transcriptomic characterization of aluminum, sodium chloride, cadmium and copper rhizotoxicities in Arabidopsis thaliana. BMC Plant Biol 9:32PubMedCentralPubMedCrossRefGoogle Scholar
  354. Zhao C, Qiao M, Yu Y, Xia G, Xiang F (2010) The effect of the heterologous expression of Phragmites australis gamma-glutamylcysteine synthetase on the Cd2+ accumulation of Agrostis palustris. Plant, Cell Environ 33:877–887CrossRefGoogle Scholar
  355. Zhao C, Xu J, Li Q, Li S, Wang P, Xiang F (2014) Cloning and characterization of a Phragmites australis phytochelatin synthase (PaPCS) and achieving Cd tolerance in tall fescue. PLoS ONE 9:e103771PubMedCentralPubMedCrossRefGoogle Scholar
  356. Zhen YH, Cheng YJ, Pan GX, Li LQ (2008) Cd, Zn and Se content of the polished rice samples from some Chinese open markets and their relevance to food safety. J Saf Environ 8:119–122Google Scholar
  357. Zhigang A, Cuijie L, Yuangang Z, Yejie D, Wachter A, Gromes R, Rausch T (2006) Expression of BjMT2, a metallothionein 2 from Brassica juncea, increases copper and cadmium tolerance in Escherichia coli and Arabidopsis thaliana, but inhibits root elongation in Arabidopsis thaliana seedlings. J Exp Bot 57:3575–3582PubMedCrossRefGoogle Scholar
  358. Zhou J, Goldsbrough PB (1994) Functional homologs of fungal metallothionein genes from Arabidopsis. Plant Cell 6:875–884PubMedCentralPubMedCrossRefGoogle Scholar
  359. Zhou ZS, Song JB, Yang ZM (2012) Genome-wide identification of Brassica napus microRNAs and their targets in response to cadmium. J Exp Bot 63:4597–4613PubMedCentralPubMedCrossRefGoogle Scholar
  360. Zhu YL, Pilon-Smith EAH, Tarun AS, Weber SU, Jouanin L, Terry N (1999) Cadmium tolerance and accumulation in Indian mustard is enhanced by over expressing γ-glutamyl cysteine synthetase. Plant Physiol 121:1169–1177PubMedCentralPubMedCrossRefGoogle Scholar
  361. Zimmerl S, Lafferty J, Buerstmayr H (2014) Assessing diversity in Triticum durum cultivars and breeding lines for high versus low cadmium content in seeds using the CAPS marker usw47. Plant Breed 133:712–717CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Visva Bharati University (Santiniketan)BolpurIndia
  2. 2.Indian Institute Pulses Research (IIPR)KanpurIndia

Personalised recommendations