Skip to main content
Log in

Salt tolerance and alterations in cytosine methylation in the interspecific hybrids of Fraxinus velutina and Fraxinus mandshurica

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

For cross-pollination trees, the optimal breeding method is hybridization. Tree heterosis is commonly present and is the main research focus in tree crossbreeding. Salt stress and interspecific hybridization may lead to DNA methylation changes. The study crossed Fraxinus mandshurica (female parent) with Fraxinus velutina (male parent) to obtain interspecific F1 hybrid progenies that could obtain the good characters of parents. The results showed that growth and survival rate of the interspecific hybrid progenies (F1 hybrids of F. mandshurica × F. velutina) were significantly higher than those of intraspecific open pollinated plants from parental F. mandshurica and F. velutina. Salt tolerance and cytosine methylation in interspecific F1 hybrids and the intraspecific open pollinated plants from parents were examined. Membrane permeability, ROS and antioxidant activity, malondialdehyde, and photosynthesis were measured after salt treatment and genomic methylation was analyzed using a methylation-sensitive amplified polymorphism protocol. F1 hybrids exhibited heterosis for growth in normal as well as high salt conditions. DNA methylation in the F1 hybrids was lower than the intraspecific open pollinated plants from parents. Salt treatments changed DNA methylation patterns in F1 hybrids. Genomic DNA of the intraspecific open pollinated plants from parents had internal cytosine methylation (average of 13.22 %), whereas F1 hybrid seedlings had external cytosine methylation (average of 7.34 %). Such changes in DNA methylation patterns in F1 hybrids suggest a connection between salt tolerance and epigenetic mechanisms in plants. We observed that alteration of DNA methylation was closely correlated with the adaptation to the salt stress and provided epigenetic mechanisms of salt tolerance in the interspecific hybridization of trees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

APX:

Ascorbate peroxidase

CAT:

Catalase

DHAR:

Dehydroascorbate reductase

GR:

Glutathione reductase

GSH:

Reduced glutathione

mC:

Methylcytosine

MDAR:

Monodehydroascorbate reductase

POD:

Peroxidises

ROS:

Reactive oxygen species

SE:

Standard error

SOD:

Superoxide dismutase

Pn:

Net photosynthetic rate

Gs:

Stomatal conductance

Ci:

Intercellular CO2 concentration

Tr:

Transpiration rate

MSAP:

Methylation-sensitive amplified polymorphism

References

  • Aebi HE (1983) Catalase. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Verlag Chemie, Weinhem, pp 273–286

    Google Scholar 

  • Amako K, Chen GX, Asada K (1994) Separate assay specific for ascorbate peroxidase and guaiacol peroxidase and for chloroplastic and cytosolic isoenzymes of ascorbate peroxidase in plants. Plant Cell Physiol 35:497–504

    CAS  Google Scholar 

  • Apel K, Hir H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Ashikawa I (2001) Surveying CpG methylation at 5′-CCGG in the genomes of rice cultivars. Plant Mol Biol 45:31–39

    Article  CAS  PubMed  Google Scholar 

  • Bilichak A, Ilnystkyy Y, Hollunder J, Kovalchuk I (2012) The progeny of Arabidopsis thaliana plants exposed to salt exhibit changes in DNA methylation, histone modifications and gene expression. PLoS ONE 7(1):e30515. doi:10.1371/journal.ppat.1004735

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blum A, Ebercon A (1981) Cell membrane stability as a measure of drought and heat tolerance in wheat. Crop Sci 21:43–47

    Article  Google Scholar 

  • Bohnert HJ, Jensen RG (1996) Metabolic engineering for increased salt tolerance. Aust J Plant Physiol 23:661–667

    Article  Google Scholar 

  • Boyko A, Kovalchuk I (2011) Genome instability and epigenetic modification -heritable responses to environmental stress? Curr Opin Plant Biol 14:260–266

    Article  PubMed  Google Scholar 

  • Boyko A, Hudson D, Bhomkar P, Kathiria P, Kovalchuk I (2006) Increase of homologous recombination frequency in vascular tissue of Arabidopsis plants exposed to salt stress. Plant Cell Physiol 47:736–742

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Bräutigam K, Vining KJ, Lafon-Placette C et al (2013) Epigenetic regulation of adaptive responses of forest tree species to the environment. Ecol Evol 3:399–415

    Article  PubMed Central  PubMed  Google Scholar 

  • Cao X, Jacobsen SE (2002) Role of the Arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing. Curr Biol 12:1138–1144

    Article  CAS  PubMed  Google Scholar 

  • Causevic A, Gentil MV, DelaunayA El-SoudWA, GarciaZ Pannetier C, Brignolas F, Hagège D, Maury S (2006) Relationship between DNA methylation and histone acetylation levels, cell redox and cell differentiation states in sugarbeet lines. Planta 224:812–827

    Article  CAS  PubMed  Google Scholar 

  • Chan SW, Henderson IR, Jacobsen SE (2005) Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat Rev Genet 6:351–360

    Article  CAS  PubMed  Google Scholar 

  • Chinnusamy V, Zhu JK (2009) Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol 12:133–139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • DaCosta M, Huang BR (2007) Changes in antioxidant enzyme activities and lipid peroxidation for bentgrass species in response to drought stress. J Am Soc Hortic Sci 132:319–326

    CAS  Google Scholar 

  • Doulis AG, Debian N, Kingston-Smith AH, Foyer CH (1997) Differential localization of antioxidants in maize. Plant Physiol 114:1031–1037

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dyachenko OV, Zakharchenko NS, Shevchuk TV, Bohnert HJ, Cushman JC, Buryanov YI (2006) Effect of hypermethylation of CCWGG sequences in DNA of Mesembryanthemum crystallinum plants on their adaptation to salt stress. Biochemistry (Moscow) 71:461–465

    Article  CAS  Google Scholar 

  • El-Mashad AA, Mohamed HI (2012) Brassinolide alleviates salt stress and increases antioxidant activity of cowpea plants (Vigna sinensis). Protoplasma 249(3):625–635

    Article  CAS  PubMed  Google Scholar 

  • Farmer EE, Mueller MJ (2013) ROS-mediated lipid peroxidation and RES-activated signaling. Annu Rev Plant Biol 64:429–450

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133:21–25

    Article  CAS  PubMed  Google Scholar 

  • Grant-Downton R, Dickinson H (2005) Epigenetics and its implications for plant biology. 1. The epigenetic network in plants. Ann Bot 96:1143–1164

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grant-Downton RT, Dickinson HG (2006) Epigenetics and its implications for plant biology 2. The ‘epigenetic epiphany’: epigenetics, evolution and beyond. Ann Bot 97(1):11–27

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Griffin JR, Critchfield WB (1972) The distribution of forest trees in California. Research paper PSW-82. USDA Forest Service, Pacific Southwest Forest and Range Experiment Station, Berkeley, CA

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  CAS  PubMed  Google Scholar 

  • Hepburn AG, Wade M, Fraser RSS (1985) Present and future prospects for exploitation of resistance in crop protection by novel means. Mech Resist Plant Dis Adv Agric Biotechnol 17:425–452

    Google Scholar 

  • Hernandez M, Fernandez-Garcia N, Diaz-Vivancos P, Olmos E (2010) A different role for hydrogen peroxide and the antioxidative system under short and long salt stress in Brassica oleracea roots. J Exp Bot 61(2):521–535

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hernández JA, Jiménez A, Mullineaux PM, Sevilla F (2000) Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defences. Plant Cell Environ 23:853–862

    Article  Google Scholar 

  • Hooftman DAP, De Jong MJ, Oostermeijer JGB, Den Nijs HCM (2007) Modelling the long-term consequences of crop–wild relative hybridization: a case study using four generations of hybrids. J Appl Ecol 44:1035–1045

    Article  Google Scholar 

  • Hooftman DAP, Hartman Y, Oostermeijer JGB, Den Nijs HCM (2009) Existence of vigorous lineages of crop–wild hybrids in lettuce under field conditions. Environ Biosaf Res 4:203–217

    Article  Google Scholar 

  • Hossain MA, Nakano Y, Asada K (1984) Monodehydroascorbate reductase in spinach chloroplasts and its participation in regeneration of ascorbate for scavenging hydrogen peroxide. Plant Cell Physiol 25:385–395

    CAS  Google Scholar 

  • Hu LJ, Uchiyama K, Shen HL, Saito Y, Tsuda Y, Ide Y (2008) Nuclear DNA microsatellites reveal genetic variation but a lack of phylogeographical structure in an endangered species, Fraxinus mandshurica, across North-east China. Ann Bot 102:195–205

    Article  PubMed Central  PubMed  Google Scholar 

  • Hua Y, Chen XF, Xiong JH, Zhang YP, Zhu YG (2005) Isolation and analysis of differentially methylated fragment CIDM7 in rice induced by cold stress. Heredits 27(4):595–600

    CAS  Google Scholar 

  • Karan R, DeLeon T, Biradar H, Subudhi PK (2012) Salt stress induced variation in DNA methylation pattern and its influence on gene expression in contrasting rice genotypes. PLoS ONE 7(6):e40203. doi:10.1371/journal.ppat.1004735

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • King IP, Law CN, Cant KA, Orford SE, Reader SM, Miller TE (1997) Tritipyrum, a potential new salt-tolerant cereal. Plant Breed 116:127–132

    Article  Google Scholar 

  • Kočová M, Holá D, Wilhelmová N, Rothová O (2009) The influence of low-temperature on the photochemical activity of chloroplasts and activity of antioxidant enzymes in maize leaves. Biol Plant 53:475–483

    Article  Google Scholar 

  • Kosugi H, Kikugawa K (1985) Thiobarbituric acid reaction of aldehydes and oxidized lipids in glacial acetic acid. Lipids 20(12):915–921

    Article  CAS  Google Scholar 

  • Kovalchuk I, Kovalchuk O, Kalck V, Boyko V, Filkowski J, Heinlein M, Hohn B (2003) Pathogen-induced systemic plant signal triggers DNA rearrangements. Nature 423:760–762

    Article  CAS  PubMed  Google Scholar 

  • Kovarik A, Koukalova B, Bezdek M, Opatrn Z (1997) Hypermethylation of tobacco heterochromatic loci in response to osmotic stress. Theor Appl Genet 95:301–306

    Article  Google Scholar 

  • Labra M, Ghiani A, Citterio S, Sgorbati S, Sala F, Vannini C, Ruffini-Castiglione M, Bracale M (2002) Analysis of cytosine methylation pattern in response to water deficit in pea root tips. Plant Biol (Stuttgart) 4:694–699

    Article  CAS  Google Scholar 

  • Li B, Howe GT, Wu R (1998) Developmental factors responsible for heterosis in aspen hybrids (Populus tremuloides × P. tremula. Tree Physiol 18(1):29–36

    Article  PubMed  Google Scholar 

  • Lima ALS, DaMatta FM, Pinheiro HA, Totola MR, Loureiro ME (2002) Photochemical responses and oxidative stress in two clones of Coffea canephora under water deficit conditions. Environ Exp Bot 47:239–247

    Article  CAS  Google Scholar 

  • Liu B, Wendel JF (2000) Retrotransposon activation followed by rapid repression in introgressed rice plants. Genome 43:874–880

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Bauer LS, Gao R, Zhao T, Petrice TR, Haack RA (2003) Exploratory survey for the emerald ash borer, Agrilus planipennis (Coleoptera: Buprestidae), and its natural enemies in China. Great Lakes Entomol 36:191–204

    Google Scholar 

  • Lutts S, Kinet JM, Bouharmont J (1996) NaCl-induced senescence in leaves of rice (Oriza sativa L.) cultivar differing in salinity resistance. Ann Bot 78:389–398

    Article  CAS  Google Scholar 

  • Ma YH, Ma FW, Zhang JK, Li MJ, Wang YH, Liang D (2008) Effects of high temperature on activities and gene expression of enzymes involved in ascorbate–glutathione cycle in apple leaves. Plant Sci 157:761–766

    Article  Google Scholar 

  • Maribel L, Dionisio-Sese Satoshi T (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135:1–9

    Article  Google Scholar 

  • Meir S, Philosoph-hadas S, Aharoni N (1992) Ethylene-increased accumulation of fluorescent lipid-peroxidation products detected during senescence of parsley by a newly developed method. J Am Soc Hortic Sci 117:128–132

    CAS  Google Scholar 

  • Mirouze M, Paszkowski J (2011) Epigenetic contribution to stress adaptation in plants. Curr Opin Plant Biol 14:267–274

    Article  CAS  PubMed  Google Scholar 

  • Misra N, Gupta AK (2006) Effect of salinity and different nitrogen sources on the activity of antioxidant enzymes and indole alkaloid content in Catharanthus roseus seedlings. J Plant Physiol 163:11–18

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Merquiol E, Hallak-Herr E, Rachmilevitch S, Kaplan A, Cohen M (2001) Living under a “dormant” canopy: a molecular acclimation mechanism of the desert plant Retama raetam. Plant J 25:407–416

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Nakano Y, Asada K (1987) Purification of ascorbate peroxidase in spinach chloroplasts; its inactivation in ascorbate-depleted medium andreactivation by monodehydroascorbate radical. Plant Cell Physiol 28:131–140

    CAS  Google Scholar 

  • Natcheva R, Cronberg N (2007) Maternal transmission of cytoplasmic DNA in interspecific hybrids of peat mosses, Sphagnum (Bryophyta). J Evol Biol 20:1613–1616

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  PubMed  Google Scholar 

  • Parida AK, Das AB, Mittra B (2003) Effect of NaCl stress on the structure, pigment complex composition, and photosynthetic activity of mangrove Bruguiera parviflora chloroplasts. Photosynthetica 41:191–200

    Article  CAS  Google Scholar 

  • Pnueli L, Hongjian L, Mittler R (2003) Growth suppression, altered stomatal responses, and augmented induction of heat shock proteins in cytosolic ascorbate peroxidase (Apx1)-deficient Arabidopsis plants. Plant J 34:187–203

    Article  CAS  PubMed  Google Scholar 

  • Porebski S, Bailey LG, Baum BR (1997) Modification of a cTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol Biol Rep 15:8–15

    Article  CAS  Google Scholar 

  • Portis E, Acquadro A, Comino C, Lanteri S (2004) Analysis of DNA methylation during germination of peper (Capsicum annuum L) seeds using ethylation-sensitive amplification polymorphism (MSAP). Plant Sci 166(1):169–178

    Article  CAS  Google Scholar 

  • Puckette MC, Weng H, Mahalingam R (2007) Physiological and biochemical responses to acute ozone-induced oxidative stress in Medicago truncatula. Plant Physiol Biochem 45(1):70–79

    Article  CAS  PubMed  Google Scholar 

  • Queiroz CGS, Alonso A, Mares-Guia M, Magalhaes AC (1998) Chilling-induced changes in membrane fluidity and antioxidant enzyme activities in Coffea arabica L. roots. Biol Plant 41:403–413

    Article  CAS  Google Scholar 

  • Rangwala SH, Richards EJ (2004) The value-added genome: building and maintaining genomic cytosine methylation landscapes. Curr Opin Genet Dev 14:686–691

    Article  CAS  PubMed  Google Scholar 

  • Rapp RA, Wendel JF (2005) Epigenetics and plant evolution. New Phytol 168:81–91

    Article  CAS  PubMed  Google Scholar 

  • Reyna-Lopez GE, Simpson J, Ruiz-Herrera J (1997) Differences in DNA methylation patterns are detectable during the dimorphic transition of fungi by amplification of restriction polymorphisms. Mol Gen Genet 253:703–710

    Article  CAS  PubMed  Google Scholar 

  • Ruiz GL, Cervera MT, Martínez-Zapater JM (2005) DNA methylation increases throughout Arabidopsis development. Planta 222(2):301–306

    Article  Google Scholar 

  • Salmon A, Ainouche ML, Wendel JF (2005) Genetic and epigenetic consequences of recent hybridization and polyploidy in Spartina (Poaceae). Mol Ecol 14:1163–1175

    Article  CAS  PubMed  Google Scholar 

  • SarangaY Zamir D, Marani A, Rudich J (1991) Breeding tomatoes for salt tolerance—field-evaluation of Lycopersicon germplasm for yield and dry-matter production. J Am Soc Hortic Sci 116:1067–1071

    Google Scholar 

  • Shan X, Liu Z, Dong Z, Wang Y, Chen Y, Lin X, Long L, Han F, Dong Y, Liu B (2005) Mobilization of the active MITE transposons mPing and Pong in rice by introgression from wild rice (Zizania latifolia Griseb.). Mol Biol Evol 22:976–990

    Article  CAS  PubMed  Google Scholar 

  • Shepherd M, Kasem S, Lee DJ, Henry R (2008) Mapping species differences for adventitious rooting in a Corymbia torelliana × Corymbia citriodora subspecies variegata hybrid. Tree Genet Genomes 4(4):715–725

    Article  Google Scholar 

  • Shivaprasad PV, Dunn RM, Santos BACM, Bassett A, Baulcombe DC (2011) Extraordinary transgressive phenotypes of hybrid tomato are influenced by epigenetics and small silencing RNAs. The EMBO J 31:257–266

    Article  PubMed  Google Scholar 

  • Smith I (1985) Stimulation of glutathione synthesis in photorespiring plants by catalase inhibitors. Plant Physiol 79:1044–1047

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Song Y, Ji D, Li S, Wang P, Li Q, Xiang F (2012) The dynamic changes of DNA methylation and histone modifications of salt responsive transcription factor genes in soybean. PLoS ONE 7(7):e41274

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Springer NM, Robert M (2007) Stupar Allelic variation and heterosis in maize: how do two halves make more than a whole? Genome Res 17:264–275

    Article  CAS  PubMed  Google Scholar 

  • Tal M, Shannon MC (1983) Salt tolerance in two wild relatives of the cultivated tomato: responses of Lycopersican esculentum, L. cheesmani, L. peruvianum, Solanum pennelli, and F1 hybrids of high salinity. Aust J Plant Physiol 10:109–117

    Article  Google Scholar 

  • Tavakkoli E, Rengasamy P, McDonald GK (2010) High concentrations of Na+ and Cl ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress. J Exp Bot 61(15):4449–4459

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tozlu I, Moore GA, Guy CL (2000) Regulation of growth and differential tissue dry mass accumulation by Citrus grandis, Poncirus trifoliata, and their F1 under salinized and non-salinized environments. Aust J Plant Physiol 27:27–33

    Google Scholar 

  • Tsaftaris AS, Kafka M (1998) Mechanisms of heterosis in crop plants. J Crop Prod 1:95–111

    Article  Google Scholar 

  • Wang R, Chen S, Deng L, Fritz E, Hüttermann A, Polle A (2007) A Leaf photosynthesis, fluorescence response to salinity and the relevance to chloroplast salt compartmentation and anti-oxidative stress in two poplars. Trees-Struct Funct 21:581–591

    Article  CAS  Google Scholar 

  • Xiong LZ, Xu CG, Shagi-Maroof MA, Zhang Q (1999) Patterns of cytosine methyaltion in an elite rice hybrid and its parental lines, detected by a methylation-sensitive amplification polymorphism technique. Mol Genet Genomics 261:439–446

    Article  CAS  Google Scholar 

  • Xu L, Han L, Huang B (2011) Antioxidant enzyme activities and gene expression in drought-stressed Kentucky bluegrass. J Am Soc Hortic Sci 136:247–255

    CAS  Google Scholar 

  • Yan H, Kikuchi S, Neumann P, Zhang W, Wu Y, Chen F, Jiang J (2010) Genome-wide mapping of cytosine methylation revealed dynamic DNA methylation patterns associated with genes and centromeres in rice. Plant J 63:353–365

    Article  CAS  PubMed  Google Scholar 

  • Zhou R, Zhao H (2004) Seasonal pattern of antioxidant enzyme system in the roots of perennial forage grasses grown in alpine habitat, related to freezing tolerance. Physiol Plant 121:399–408

    Article  CAS  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6(2):66–71

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu JK (2008) Epigenome sequencing comes of age. Cell 133:395–397

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu Z, Chen J, Zheng HL (2012) Physiological and proteomic characterization of salt tolerance in a mangrove plant, Bruguiera gymnorrhiza (L.) Lam. Tree Physiol 32(11):1378–1388

    Article  CAS  PubMed  Google Scholar 

  • Zlatev ZS, Lidon FC, Ramalho JC, Yordanov IT (2006) Comparison of resistance to drought of three bean cultivars. Biol Plant 50:389–394

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by The National Forestry Science and Technology Support Program (2012BAD01B0503), The Innovation Project of State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University) (2013B04) and the National Natural Science Foundation of China (NO: 31270697) and Harbin Science and Technology Innovation Funds (RC2011QN002051). We also thank the editor and anonymous reviewers for many detailed and helpful comments that improved the quality of this manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Data archiving statement

The research performed in the present study did not produce any data on nucleic acid or protein sequences, genetic maps, SNPs or gene expression that could be deposited in the public databases. Data of enzyme assays and physiological parameters is stored at Northeast Forestry University, Harbin (http://www.nefu.edu.cn/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya-Guang Zhan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, FS., Li, LL., Liang, NS. et al. Salt tolerance and alterations in cytosine methylation in the interspecific hybrids of Fraxinus velutina and Fraxinus mandshurica . Euphytica 205, 721–737 (2015). https://doi.org/10.1007/s10681-015-1432-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-015-1432-1

Keywords

Navigation