Euphytica

, Volume 205, Issue 3, pp 785–797 | Cite as

Association of SSR markers and morpho-physiological traits associated with salinity tolerance in sugar beet (Betavulgaris L.)

  • Zahra Abbasi
  • Mohammad Mahdi Majidi
  • Ahmad Arzani
  • Abazar Rajabi
  • Parisa Mashayekhi
  • Jan Bocianowski
Article

Abstract

The conventional screening methods for salinity tolerance are time-consuming, labor-intensive and have low throughput screening rate. Molecular marker-quantitative trait association can be used to increase the efficiency of a breeding program, especially for salinity tolerance. This study was carried out to find marker-trait association using regression analysis between 13 morpho-physiological traits and 104 simple sequence repeat (SSR) markers (from 18 SSR primer pairs) on a set of 168 genotype from 12 extreme salt tolerant and sensitive crossing parents (14 samples in each parent) during 2011 and 2012. The morpho-physiological traits included Ca2+, Na+ and K+ in leaf, quality related traits in root, root yield, sugar yield and white sugar yield which were field evaluated under saline and non-saline conditions in 2 years. Results of analysis of variance revealed a significant difference between genotypes for most of the studied traits in both environments. High estimates of broad-sense heritability with relatively low genetic advance were observed for ECS and MS (in stress conditions) and for ECS and α-N in root (in non-stress conditions). The result of regression analysis showed that in 2011, five markers [(FDSB1007 (c-284 bp), KWS (a-234 bp), SB06 (c-180 bp), FDSB502 (f-293 bp) and FDSB1027 (a-211 bp)] and in 2012, nine markers [KWS (f-250), KWS (h-266), USD29 (b-153), BQ588629 (f-196), SB07 (c-278), Bmb3 (b-268), SB04 (d-200), SB15 (d-164) and Bvm3 (e-131)] had significant effect on at least one trait in both environments. Two SSR markers (FDSB502 and Bmb3) were significantly associated with the key traits contributed to salinity tolerance such as leaf Na+ and leaf K+ and the highest root quality-related traits suggesting these as the appropriate markers to improve salinity tolerance of sugar beet. The efficiency of such markers in breeding programs for developing sugar beet cultivars with high salinity tolerance requires further investigation.

Keywords

Genetic variation Association analysis SSR Salt tolerance Quality traits Sugar beet 

Abbreviations

Ca2+

Calcium content

Na+

Sodium content

K+

Potassium content

α-N

α-Amino nitrogen content

SC

Sugar content

WSC

White sugar content

ECS

Extraction coefficient of sugar

MS

Molasses sugar

RY

Root yield

SY

Sugar yield

WSY

White sugar yield

References

  1. Ahmadi M, Majidi Heravan E, Sadeghian SY, Mesbah M, Darvish F (2011) Drought tolerance variability in S1 pollinator lines developed from a sugar beet open population. Euphytica 178:339–349Google Scholar
  2. Al-Karaki GN (2000) Growth, water use efficiency and sodium and potassium acquisition by tomato cultivars grown under salt stress. J Plant Nutr 23:1–8CrossRefGoogle Scholar
  3. Bänziger M, Edmeades GO, Beck D, Bellon M (2000) Breeding for drought and nitrogen stress tolerance in maize. CIMMYT, Mexico CityGoogle Scholar
  4. Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 48:1649–1664CrossRefGoogle Scholar
  5. Bhargava A, Shukla S, Katiyar RS, Ohri D (2003) Selection parameters for genetic improvement in Chenopodium grain on sodic soil. J Appl Hortic 5:45–48Google Scholar
  6. Bhargava A, Shukla S, Dixit BS, Bannerji R, Ohri D (2006) Variability and genotype × cutting interactions for different nutritional components in C. album L. Hortic Sci 33:29–38Google Scholar
  7. Bocianowski J (2012a) A comparison of two methods to estimate additive-by-additive interaction of QTL effects by a simulation study. J Theor Biol 308:20–24CrossRefPubMedGoogle Scholar
  8. Bocianowski J (2012b) Analytical and numerical comparisons of two methods of estimation of additive × additive interaction of QTL effects. Sci Agric 69:240–246CrossRefGoogle Scholar
  9. Bocianowski J (2012c) The use of weighted multiple linear regression to estimate QTL-by-QTL epistatic effects. Genet Mol Biol 35(4):802–809PubMedCentralCrossRefPubMedGoogle Scholar
  10. Bocianowski J (2013) Epistasis interaction of QTL effects as a genetic parameter influencing estimation of the genetic additive effect. Genet Mol Biol 36:93–100PubMedCentralCrossRefPubMedGoogle Scholar
  11. Bocianowski J (2014) Estimation of epistasis in doubled haploid barley populations considering interactions between all possible marker pairs. Euphytica 196:105–115CrossRefGoogle Scholar
  12. Bocianowski J, Krajewski P (2009) Comparison of the genetic additive effect estimators based on phenotypic observations and on molecular marker data. Euphytica 165:113–122CrossRefGoogle Scholar
  13. Bocianowski J, Mikołajczyk K, Bartkowiak-Broda I (2012) Determination of fatty acid composition in seed oil of rapeseed (Brassica napus L.) by mutated alleles of the FAD3 desaturase genes. J Appl Genet 53:27–30PubMedCentralCrossRefPubMedGoogle Scholar
  14. Bocianowski J, Nowosad K (2015) Mixed linear model approaches in mapping QTLs with epistatic effects by a simulation study. Euphytica. doi:10.1007/s10681-014-1329-4 Google Scholar
  15. Bocianowski J, Kozak M, Liersch A, Bartkowiak-Broda I (2011) A heuristic method of searching for interesting markers in terms of quantitative traits. Euphytica 181:89–100. doi:10.1007/s10681-011-0424-z CrossRefGoogle Scholar
  16. Bocianowski J, Seidler-Łożykowska K (2012) The relationship between RAPD markers and quantitative traits of caraway (Carum carvi L.). Ind Crops Prod 36:135–139. doi:10.1016/j.indcrop.2011.08.019 CrossRefGoogle Scholar
  17. Collins NC, Tardieu F, Tuberosa R (2008) Quantitative trait loci and crop performance under abiotic stress: where do we stand? Plant Physiol 147:469–486. doi:10.1104/pp.108.118117 PubMedCentralCrossRefPubMedGoogle Scholar
  18. Cureton AN, Burns MJ, Ford-Lloyd BV, Newbury HJ (2002) Development of simple sequence repeat (SSR) markers for the assessment of gene flow between sea beet (Beta vulgaris ssp. maritima) populations. Mol Ecol Notes 2:402–403CrossRefGoogle Scholar
  19. Dadkhah AR, Grrifiths H (2006) The effect of salinity on growth, inorganic ions and dry matter partitioning in sugar beet cultivars. J Agric Sci Technol 8:199–210Google Scholar
  20. de los Reyes BG, McGrath JM (2003) Cultivar-specific seedling vigor and expression of a putative oxalate oxidase germin-like protein in sugar beet (Beta vulgaris L.). Theor Appl Genet 107:54–61PubMedGoogle Scholar
  21. do Nascimento IR, Maluf WR, Figueira AR, Menezes CB, de Resende JTV, Faria MV, Nogueira DW (2009) Marker assisted identification of topspovirus resistant tomato genotypes in segregating progenies. Sci Agric 66:298–303CrossRefGoogle Scholar
  22. Dudley JW (1993) Molecular markers in plant improvement: manipulation of genes affecting quantitative traits. Crop Sci 33:660–668CrossRefGoogle Scholar
  23. Edmeades GO, Bolaños J, Chapman SC, Laftte HR, Bänziger M (1999) Selection improves drought tolerance in tropical maize populations: I. Gains in biomass, grain yield, harvest index. Crop Sci 39:1306–1315. doi:10.2135/cropsci1999.3951306x CrossRefGoogle Scholar
  24. Edwards MD, Stuber CW, Wendel JF (1987) Molecular-marker-facilitated investigations of quantitative-trait loci in maize. I. Numbers, genomic distribution and types of gene action. Genetics 116:113–125PubMedCentralPubMedGoogle Scholar
  25. Hasthanasombut S, Ntui V, Supaibulwatana K, Mii M, Nakamura I (2010) Expression of Indica rice OsBADH1 gene under salinity stress in transgenic tobacco. Plant Biotechnol Rep 4:75–83CrossRefGoogle Scholar
  26. Heuer B, Plaut Z (1989) Photosynthesis and osmotic adjustment of two sugar beet cultivars grown under saline conditions. J Exp Bot 40:437–440CrossRefGoogle Scholar
  27. Irzykowska I, Bocianowski J (2008) Genetic variation, pathogenicity and mycelial growth rate differentiation between Gaeumannomyces graminis var. tritici isolates derived from winter and spring wheat. Ann Appl Biol 152:369–375CrossRefGoogle Scholar
  28. Irzykowska L, Bocianowski J, Baturo-Cieśniewska A (2013a) Association of mating-type with mycelium growth rate and genetic variability of Fusarium culmorum. Cent Eur J Biol 8:701–711Google Scholar
  29. Irzykowska L, Werner M, Bocianowski J, Karolewski Z, Frużyńska-Jóźwiak D (2013b) Genetic variation of horse chestnut and red horse chestnut and trees susceptibility to Erysiphe flexuosa and Cameraria ohridella. Biologia 68:851–860CrossRefGoogle Scholar
  30. Javidfar F, Ripley VL, Roslinsky V, Zeinali H, Abdmishani C (2006) Identification of molecular markers associated with oleic and linolenic acid in spring oilseed rape (Brassica napus). Plant Breed 125:65–71CrossRefGoogle Scholar
  31. Johnson HW, Robinson HF, Comstock RE (1955) Estimates of genetic and environmental variability in soybean. Agron J 47:314–318CrossRefGoogle Scholar
  32. Kamruzzahan MM, Hossain RI, Alam MF (2000) Variability and correlation studies in tomato (Lycopersicon esculantum Mill.). Bangladesh J Genet Biotechnol 1:21–26Google Scholar
  33. Kozak M, Bocianowski J, Rybiński W (2013) Note on the use of coefficient of variation for data from agricultural factorial experiments. Bulg J Agric Sci 19:644–646Google Scholar
  34. Lande R, Thompson R (1990) Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124:743–756PubMedCentralPubMedGoogle Scholar
  35. Laurent V, Devaus P, Thiel T, Viard F, Mielordt S, Touzet P, Quillet MC (2007) Comparative effectiveness of sugar beet microsatellite markers isolated from genomic libraries and GenBank ESTs to map the sugar beet genome. Theor Appl Genet 115:793–805CrossRefPubMedGoogle Scholar
  36. Liu H, Wang Q, Yu M, Zhang Y, Wu Y, Zhang H (2008) Transgenic salt-tolerant sugar beet (Beta vulgaris L.) constitutively expressing an Arabidopsis thaliana vacuolar Na+/H + antiporter gene, AtNHX3, accumulates more soluble sugar but less salt in storage roots. Plant, Cell Environ 31:1325–1334CrossRefGoogle Scholar
  37. Marschner H, Kykin A, Kuiper PJC (1981) Differences in salt tolerance of three sugar beet genotypes. Physiol Plant 51:234–238CrossRefGoogle Scholar
  38. Martin E, Cravero V, Espósito A, López Anido F, Milanesi L, Cointry E (2008) Identification of markers linked to agronomic traits in globe artichoke. Aust J Crop Sci 1:43–46Google Scholar
  39. McGrath JM, Trebbi D, Fenwick A, Panella L, Schulz B, Laurent V, Barnes S, Murray SC (2007) An open-source first-generation molecular genetic map from a sugar beet × table beet cross and its extension to physical mapping. Crop Sci 47:27–44CrossRefGoogle Scholar
  40. Mcharo M, LaBonte DR, Clark C, Hoy M, Oard JH (2005) Molecular marker variability for southern root-knot nematode resistance in sweetpotato. Euphytica 144:125–132CrossRefGoogle Scholar
  41. Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829PubMedCentralPubMedGoogle Scholar
  42. Miano DW, LaBonte DR, Clark AC (2008) Identification of molecular markers associated with sweet potato resistance to sweet potato virus disease in Kenya. Euphytica 160:15–24CrossRefGoogle Scholar
  43. Murray MG, Thompson WF (1998) Rapid isolation of high molecular weight plant DNA. Nucl Acid Res 8:4321–4325CrossRefGoogle Scholar
  44. Ober ES, Rajabi A (2010) Abiotic stress in sugar beet. Sugar Tech 12:294–298. doi:10.1007/s12355-010-0035-3 CrossRefGoogle Scholar
  45. Pawłowicz I, Rapacz M, Bocianowski J (2008) Identification of AFLP markers linked with low-temperature resistance in introgressions transferred from Festuca arundinacea to Lolium multiflorum. Plant Breed Seed Sci 58:3–10Google Scholar
  46. Reinefeld E, Emmerich A, Baumgarten G, Winner C, Beiß U (1974) Zur voraussage des melassezuckers aus rubenanalysen. Zucker 27:2–15Google Scholar
  47. Richards CM, Brownson M, Mitchell SE, Kresovich S, LE Panella (2004) Polymorphic microsatellite markers for inferring diversity in wild and domesticated sugar beet (Beta vulgaris). Mol Ecol Notes 4:243–245CrossRefGoogle Scholar
  48. Rozema J, Flowers TJ (2008) Crops for a salinized world. Science 322:1478–1480CrossRefPubMedGoogle Scholar
  49. Schneider K, Borchardt DC, Schafer-Pregl R, Nagl N, Glass C, Jeppsson A, Gebhardt C, Salamini F (1999) PCR-based cloning and segregation analysis of functional gene homologues in Beta vulgaris. Mol Gen Genet 262:515–524CrossRefPubMedGoogle Scholar
  50. Schneider K, Schäfer-Pregl R, Borchardt DC, Salamini F (2002) Mapping QTLs for sucrose content, yield and quality in a sugar beet population fingerprinted by EST-related markers. Theor Appl Genet 104:1107–1113CrossRefPubMedGoogle Scholar
  51. Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234CrossRefPubMedGoogle Scholar
  52. Shukla S, Bhargava A, Chatterjee A, Srivastava A, Singh SP (2006) Genotypic variability in vegetable amaranth (Amaranthus tricolor L.) for foliage yield and its contributing traits over successive cuttings and years. Euphytica 151:103–110. doi:10.1007/s10681-006-9134-3 CrossRefGoogle Scholar
  53. Tuberosa R, Salvi S, Sanguineti MC, Landi P, Maccaferri M, Conti S (2002) Mapping QTLs regulating morpho-physiological traits and yield: case studies, shortcomings and perspectives in drought-stressed maize. Ann Bot (London) 89:941–963. doi:10.1093/aob/mcf134 CrossRefGoogle Scholar
  54. Uno Y, Kanechi M, Inagaki N, Sugimoto M, Maekawa S (1996) The evaluation of salt tolerance during germination and vegetative growth of asparagus, table beet and sea aster. J Jpn Soc Hortic Sci 65:579–585CrossRefGoogle Scholar
  55. Weber Z, Irzykowska L, Bocianowski J (2005) Analysis of mycelial growth rates and RAPD-PCR profiles in a population of Gaeumannomyces graminis var. tritici originating from wheat plants grown from fungicide-treated seed. J Phytopathol 153:318–324CrossRefGoogle Scholar
  56. Wolko Ł, Bocianowski J, Antkowiak W, Słomski R (2015) Genetic diversity and population structure of wild pear (Pyrus pyraster (L.) Burgsd.) in Poland. Open Life Sci 10(1):19–29. doi:10.1515/biol-2015-0003 Google Scholar
  57. Wu GQ, Liang N, Feng RJ, Zhang JJ (2013) Evaluation of salinity tolerance in seedlings of sugar beet (Beta vulgaris L.) cultivars using proline, soluble sugars and cation accumulation criteria. Acta Physiol Plant 35:2665–2674. doi:10.1007/s11738-013-1298-6 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Zahra Abbasi
    • 1
  • Mohammad Mahdi Majidi
    • 1
  • Ahmad Arzani
    • 1
  • Abazar Rajabi
    • 2
  • Parisa Mashayekhi
    • 3
  • Jan Bocianowski
    • 4
  1. 1.Department of Agronomy and Plant Breeding, College of AgricultureIsfahan University of TechnologyIsfahanIran
  2. 2.Department of Plant BreedingSugar Beet Seed Institute (SBSI)KarajIran
  3. 3.Department of Soil ResearchIsfahan Agriculture and Natural Resources Research CenterIsfahanIran
  4. 4.Department of Mathematical and Statistical MethodsPoznan University of Life SciencesPoznańPoland

Personalised recommendations